
Morphological PDEs on Graphs for Filtering and
Inpainting of Point Clouds

François Lozes, Abderrahim Elmoataz, Olivier Lézoray
Normandie Univ., UNICAEN, ENSICAEN, GREYC UMR CNRS 6072, Caen, France

{francois.lozes,abderrahim.elmoataz-billah,olivier.lezoray}@unicaen.fr

Abstract—In this paper, we propose an adaptation of morpho-
logical Partial Differential Equations (PDEs) on graphs using the
framework of Partial difference Equations (PdEs). This enables to
define adaptive morphological operators on graphs. We then show
how these operators can be used for interpolation and filtering
of raw point clouds. To enable a patch-based processing of point
clouds, we also show how a weighted graph based on patches can
be associated with a point cloud. Finally, we present applications
in cultural heritage1.

I. INTRODUCTION

The recent proliferation of commercial three-dimensional
digital scanning devices has enabled to establish 3D scanning
as a practical reality in the field of cultural heritage preserva-
tion [SBG11]. The interest in 3D scanning for cultural heritage
is evident: it provides a high precision digital reference of a
cultural object, and makes possible its easy mass distribution
and consultation. The cyark project (www.cyark.org) is such
an example that aims at digitally sharing and preserving the
world’s cultural heritage.

3D scanners create point clouds or meshes. Point clouds
consist of sets of unorganized and non-oriented points given by
their x, y, z coordinates. Additionally, a color can be associated
with each point. On the contrary, a mesh is a collection of
vertices, edges and faces that defines the shape of a polyhedral
object. The faces usually consist of triangles and some texture
can be associated with these faces for visualization purposes.
The study of polygon meshes has a long history in the fields
of computer graphics and geometric modeling [BKP+10].

In fact, 3D scanners first acquire 3D data as a raw point
cloud and the latter is post-processed to be converted in a
(usually) triangular mesh. Indeed, triangular meshes can be
very efficiently visualized on most 3D video cards. However,
with the advent of 3D scanners that have a very low acquisition
error, there is a growing interest in the processing of raw point
clouds. The goal is different from having the data in the form
of triangular meshes: one wants to keep an optimal accuracy
that enables to put in evidence all the defects of the scanning
process as well as recovering all textures and details. This
interest in the disposal of raw point clouds goes beyond 3D
scanners, for example LIDAR (Light Detection and Ranging)
scanners also generate raw point clouds that are for interest in
cultural heritage.

All these elements have led to the developments of tech-
niques that enable to directly process a raw point cloud [Dig12]

1This work was funded under a Ph.D. grant of the regional council of
Lower-Normandy.

(see e.g., the Point Cloud library at www.pointclouds.org).
Our work is in line with these recent developments and
aims at proposing a general formalism for the morphological
processing of point clouds with the adaptation of PDEs on
Graphs.

In this paper, we present a way to restore 3D raw point
clouds using the framework of PdEs to perform graph-based
morphological processing [ELB08]. All the presented PdEs in
this paper are based on morphological operators. Unlike level
sets or parametric surfaces, with weighted graphs we work
directly with raw discrete data. Here, the handled data are
associated with each point of a point cloud: coordinates or
colors.

The paper is organized as follows. In the first section,
we present PdEs on graphs [ELB08], [EDL12] and derive
morphological operators that are used to filter or inpaint point
clouds. Second section presents the construction of a patch-
based weighted graph from a point cloud. Last section presents
examples of filtering and inpainting on real 3D scanned
objects.

II. WEIGHTED GRAPHS

In this section, we recall definitions and operators on
graphs. This constitutes the basis of the framework of PdEs on
a graph [ELB08] that enables to transpose PDEs on graphs.

A. Notations and Preliminaries

A weighted graph G = (V,E, w) consists of a finite set
V = {v1, . . . , vN} of N vertices and a finite set E ⊂ V × V
of weighted edges. We assume G to be undirected, with no
self-loops and no multiple edges. Let (vi, vj) be the edge
of E that connects two vertices vi and vj of V. Its weight,
denoted by w(vi, vj), represents the similarity between its
vertices. Similarities are usually computed by using a positive
symmetric function w : V×V→ R+ satisfying w(vi, vj) = 0
if (vi, vj) /∈ E. The notation vi ∼ vj is also used to denote
two adjacent vertices. The degree of a vertex vi is defined as
δw(vi) =

∑
vj∼vi w(vi, vj). Let H(V) be the Hilbert space

of real-valued functions defined on the vertices of a graph. A
function f : V → R of H(V) assigns a real value f(vi) to
each vertex vi ∈ V. H(V) space is endowed with the usual
inner products.

B. Difference Operators on Weighted Graphs

Let G = (V,E, w) be a weighted graph, f : V → R be
a function of H(V) and w : V × V → R+, a weight function

www.cyark.org
www.pointclouds.org

that depends on the interactions between the vertices. The
difference operator [ELB08] of f , noted dw : H(V)→ H(E),
is defined on an edge (vi, vj) ∈ E by:

(dwf)(vi, vj) =
√
w(vi, vj)(f(vj)− f(vi)). (1)

The directional derivative (or edge derivative of f , at a vertex
vi ∈ V, along an edge e = (vi, vj), is defined as:

∂vjf(vi) = (dwf)(vi, vj). (2)

The external and internal morphological directional partial
derivative operators are respectively defined as [TEL11]:

∂+
vjf(vi) =

(
∂vjf(vi)

)+
, (3)

∂−vjf(vi) =
(
∂vjf(vi)

)−
. (4)

where (x)+ = max(x, 0) and (x)− = −min(x, 0). Discrete
upwind non-local weighted gradients are defined as:

(∇±wf)(vi) =
(

(∂±vjf)(vi)
)T
vj∈V

. (5)

The Lp norms and the L∞ of these gradients are defined by:

||(∇±wf)(vi)||p =

 ∑
vj∼vi

w
p
(vi, vj)

[
(f(vj)− f(vi))

±
]p 1

p

, (6)

||(∇±wf)(vi)||∞ = max
vj∼vi

(
w(vi, vj)|(f(vj)− f(vi))

±|
)
. (7)

In the sequel we will consider only the L∞ norm. The
∞−Laplacian can be defined from these norms by [EDL12]:

(∆w,∞f)(vi) =
1

2

[
||(∇+

wf)(vi)||∞ − ||(∇−wf)(vi)||∞||
]
.

(8)

C. Morphological Operators on Graphs

Continuous-scale morphology [BM94] defines the flat di-
lation δ and erosion ε of a function f0 : Rm → R by using
structuring sets B = {x : ||x||p ≤ 1} with the following
general PDEs:

∂f

∂t
= +||∇f ||p and

∂f

∂t
= −||∇f ||p, (9)

where f is a modified function of f0, ∇ is the gradient
operator, || · ||p corresponds to the Lp-norm, and one has the
initial condition f = f0 at t = 0. With different values of
p, one obtains different structuring elements: a rhombus for
p =∞, a disc for p = 2, and a square for p = 1 [BM94]. The
solution at time n provides a dilation (with the plus sign) or an
erosion (with the minus sign) with a structuring element of size
n∆t. We have proposed in [TEL11] the discrete PdEs analogue
of these PDEs-based dilation and erosion formulations. This
provides the following expression over graphs for a given
initial function f : V→ R, ∀vi ∈ V :

∂f

∂t
(vi, t) = +||(∇+

wf)(vi)||p , and

∂f

∂t
(vi, t) = −||(∇−wf)(vi)||p .

(10)

For the case of p = ∞, these morphological processes can
be expressed by iterative schemas. For instance, the dilation
process can be expressed by:

f
n+1

(vi) = f
n

(vi) + ∆t max
vj∼vi

(√
w(vi, vj)(f

n
(vj)− fn

(vi))
+

)
. (11)

For ∆t = 1 and w = 1, one recovers the classical algebraic
formulation of mathematical morphology (see [TEL11] for
details). In this paper we restrict ourselves to ∆t = 1 but
with w 6= 1. This enables to introduce adaptivity and provides
a formulation of adaptive mathematical morphology on graphs.
In the processing, the structuring element B (supposed to be
symmetric) is provided by the local neighborhood configura-
tions and expressed by B(vi) = {vj ∼ vi}∪{vi}. In the special
case where ∆t = 1, the dilation PdE can be interpreted as an
iterative non-local dilation (NLD) process, and as a non-local
erosion (NLE) for the erosion PdE. These processes can be
expressed as

fn+1(vi) = NLD(fn)(vi)

= fn(vi) + ||(∇+
wf

n)(vi)||∞
= fn(vi) + max

vj∼vi

(
w(vi, vj)(f

n(vj)− fn(vi))
+
)

(12)
for the dilation, and

fn+1(vi) = NLE(fn)(vi)

= fn(vi)− ||(∇−wfn)(vi)||∞
= fn(vi) + min

vj∼vi

(
w(vi, vj)(f

n(vi)− fn(vj))
−)
(13)

for the erosion. Additionnaly, it was shown in [EDL12] that
the non-local ∞−Laplacian (Eq. 8) depends on these NLD
and NLE operators:

(∆w,∞f)(vi) = NLA(f)(vi)− f(vi), (14)

where:

NLA(f)(vi) =
1

2
[NLD(f)(vi) +NLE(f)(vi)]. (15)

This approach can be used to define other morphological
operators based on erosion ε or dilation δ operators, such
as openings γ = (δε), closings φ = (εδ), or morphological
gradients (δ − ε). For instance we propose a formulation of
the non-local closing (NLC) operation that can be defined as:

∂f

∂t
(vi, t) =− sign+(t− s+ 1)||(∇−wf)(vi)||∞

+ sign+(s− t)||(∇+
wf)(vi)||∞,

(16)

with t ∈ [0, 2s[and

sign+(x) =

{
1 if x > 0,

0 otherwise.
(17)

This PdE has a time-dependent switching coefficient that
makes it act as a dilation δ for t ∈ [0, s[and an erosion ε
for t ∈ [s, 2s[. This formulation is different from the classical
PDEs one [AGLM93] and does not produce discontinuities at
the switching time. This can be interpreted as the following
non-local iterative process:

f (n+1)(vi) = NLC(f (n))(vi)

= sign+(t− s+ 1)NLE(f (n))(vi)

+ sign+(s− t)NLD(f (n))(vi).

(18)

Similarly, one can express the non-local opening NLO as an
iterative process.

D. Interpolation and Filtering on Weighted Graphs

Many image processing problems can be formalized as
inverse problems. In this section, we show how our formulation
of the non-local ∞−Laplacian (Eq.14) can be used for two
inverse problems: interpolation and filtering.

1) Interpolation: Many tasks in image processing and
computer vision can be formulated as interpolation problems.
Interpolating data consists in constructing new values for
missing data in coherence with a set of known data. Our
motivation for using the non-local ∞-Laplacian on graphs for
interpolation stems from the fact that flexible data processing
tools that can be adapted easily to general domains modeled by
graphs are needed. Recent works on inpainting tend to unify
local and non-local approaches under a variational formulation
(see [AFCS11] and references therein for more details). We
presented a unifying approach of local geometric methods and
non-local exemplar-based ones for inpainting [GCE09] using
the framework of discrete non-local regularization on graphs
introduced in [ELB08]. We consider that data are defined on
a general domain represented on a graph G = (V,E, w). Let
f0 : V → R be a function. Let A ⊂ V be the subset of
vertices with unknown values and ∂A the subset of vertices
with known values. The purpose of interpolation is to find a
function f∗ approximating f0 in V minimizing the energy:{

(∆w,∞f)(vi) = 0 ∀u ∈ A,
f(u) = f0(vi) ∀u ∈ ∂A. (19)

The solution f∗ is said to be infinity-harmonic [GEL11].

2) Filtering: Being a typical inverse problem, filtering is
a challenging task and basically addresses the problem of
estimating the true signal from its noisy measured version. We
introduce the use of the∞−Laplacian on weighted graphs for
data restoration. Let us consider a function f0 : V → R of
a weighted graph G = (V,E, w). f0 is an observation of an
original function f corrupted by a noise n: f0 = f∗ + n.
The purpose of restoration is to recover f∗ from its noisy
representation f0. Thus, the discrete regularization of f0 using
the non-local ∞−Laplacian operator consists in seeking a
function f∗ that is smooth enough on G. This corresponds
to consider 

∂f

∂t
= ∆w,∞f,

f(., 0) = f0.
(20)

3) Interpolation and filtering algorithms: Whatever the
problems (interpolation or filtering), works of [EDL12] have
shown that both problems have a unique solution that can be
obtained using the following iterative algorithm:{

f (0)(vi) = f0(vi),

f (n+1)(vi) = NLA(f (n))(vi).
(21)

The solution is obtained with this simple iterative algorithm
based on the NLA operator introduced in Eq. 15. The iterative
algorithm presented in Eq. 21 converges to the unique solution
[EDL12]. This general equation describes a family of discrete
diffusion processes, parameterized by the structure of the
graph (topology and weight function w). Modifying both graph
topology and graph weights enables to perform both local and
non-local inpainting / filtering within the same framework of

PdEs. For the filtering case, all vertices are updated in parallel:
∀u ∈ V one applies iteratively Eq. 15, as shown in Eq. 21.
For the special case of inpainting, at each iteration, only the
internal boundary ∂−A = {vi ∈ A|∃vj ∼ vi, vj ∈ ∂A} is
inpainted:

NLA(f)(vi) =
1

2
[NLD(f)(vi) +NLE(E)(vi)] ∀vi ∈ ∂−A,

NLA(f)(vi) = f
0
(vi) ∀vi ∈ ∂A.

(22)

At the end of each iteration the set ∂A is updated by
∂A(n+1) = ∂A(n) ∪ ∂−A(n) and ∂−A(n+1) is updated from
∂A(n+1). The algorithm stops when the set of vertices to
inpaint is empty.

III. CONSTRUCTION OF A WEIGHTED GRAPH FROM A
POINT CLOUD

In this section, we explain how a weighted graph based on
patches can be associated with a point cloud. This relies on
three steps that we detail in the sequel.

A. Graph Creation from Data Points

First step consists in defining the sets V and E from a given
point cloud. Let us consider a point cloud P as a set of data
points {p1, . . . ,pn} ∈ R3. There are many ways of associating
a graph, that encodes proximity between points, to such a data
set. To each data point we first associate a vertex of a proximity
graph G to define a set of vertices V = {v1, v2, . . . , vn}.
Then, determining the edge set E of the proximity graph G
requires defining the neighbors of each vertex vi according
to its embedding pi using the Euclidean distance. We will
denote as D(vi, vj) = ‖pi − pj‖2 the Euclidean distance
between vertices. We consider the k Nearest Neighbors Graph
(k-NNG): vj ∼ vi if the distance between pi and pj is among
the k-th smallest distances from pi to all the other data points.
To conclude, the first step consists in associating a k-NNG to
the 3D point cloud. The value of k will be denoted kG for the
graph G associated with the point cloud. To speed up the knn
algorithm, a kD-tree is used [AMN+98].

Once the graph has been created, it has to be weighted. If
one does not want to take care of the vertices similarities,
the weight function w can be set to w = 1. A better
one can be obtained using patches [BCM10]. For images,
a patch P(vi) centered at a vertex vi ∈ V is a vector of
values (e.g., coordinates, intensities, ...) defined by P(vi) =(
f0(vj) : vj ∈ B(vi, n)

)T
where B(vi, n) is a square of size

n2 centered at vi. Using patches, w : V × V → R is defined
by:

w(vi, vj) = exp

(
−||P(vi)−P(vj)||22

σ2

)
. (23)

B. Patch Orientation

An important feature for the inpainting and the restoration
of images relies on the use of patches [BCM10], [AFCS11].
Unfortunetely there is no straightforward extension of the
definition of patches for point clouds, as well for the content
of the patch than for its orientation. Therefore the second step
consists in estimating the orientation of each patch. Indeed,

since two patches can have very different orientations in the
point cloud, we need to estimate this orientation to be able to
compare the patches.

In our previous works [LEL12], we have proposed the
following strategy to estimate the patch orientation. Let us
recall it briefly. Point clouds are first smoothed, using a local
filtering. From this filtered version, a PCA is locally applied
on the kn nearest neighbors of each point pi. This enables to
define the normal to each point pi (associated with each vertex
vi) as n(vi) (see [LEL12]). Next, patches are oriented from
principal directions computed on this smoothed point cloud.
This means that directions of first and second axis of the patch
basis will coincide respectively with major and minor principal
directions. To compute these principal directions at point pi,
we used the arguments of [Dig12]: principal directions can
be estimated as the eigenvectors of a PCA of the covariance
matrix of the normals of the neighbors of pi.

However this strategy is not always efficient. Indeed, be-
cause the orientation of patches are computed from principal
directions, these orientations highly depend on the repartition
of points in the 3D space. So, similar parts of a point cloud
will produce similar orientations of the patches. Unfortunetly,
because the obtained orientation depends highly on the most
predominant axis, one can find different patches orientations
for similars points repartitions, and conversely. Therefore we
propose another way to obtain the patch orientation.

Another way to orient patches is to deduce an orientation
from normal vectors. On the contrary to the principal direction
method presented above, which depends on the repartition of
neighboring points, it is better to deduce the orientation from
the normals. Indeed, this will produce the same orientations
for points that have similar normals. The proposed algorithm is
therefore to first deduce a tangent vector t(vi) from the normal
vector n(vi). Let x, y, z be the three axis of a 3D space, the
tangent vector t(vi) is computed with:

t(vi) = z× n(vi) if (x · n(vi)) > (z · n(vi)),

t(vi) = z× n(vi) if (y · n(vi)) > (z · n(vi)),

t(vi) = x× n(vi) otherwise,
(24)

with × the cross product operator, and · the dot product
operator. Then a bitangent vector b(vi) is computed by b(vi) =
n(vi) × t(vi). The orientations vectors o0(vi), o1(vi), o2(vi)
are then respectively assigned to t(vi),b(vi),n(vi).

C. Patch Construction

Final step consists in constructing the patches. Given a
point pi, defining a patch for this point comes to construct
a square grid around pi on its tangent plane. We fix the
patch length l manually. Let n be the number of cells on a
row of the patch. A square lattice of n2 cells is constructed
around pi with respect to the basis obtained from orientation
computation. Each cell has a side length of l/n. A local
graph is then considered that connects the vertex vi to all
the vertices vj contained in a sphere of diameter l

√
2. Then,

all the neighbors vj of vi are projected on the tangent plane
of pi giving rise to projected points p′i. To fill the patch
with values, these projected points p′i are affected to the
cells the center of which is the closest. The value of the
cell is then deduced from a weighted average of the values

f0(vj) associated with the vertices vj that where affected
to the patch cell. This value is a spectral value (the points’
colors). The set of values inside the patch of the vertex vi
are denoted as P(vi). Let Ck(vi) denotes the kth cell of
the constructed patch around vi with k ∈ [1, n2]. With the
proposed patch construction process, one can define the set
Vk(vi) = {vj | p′j ∈ Ck(vi)} as the set of vertices vj that were
affected to the kth patch cell of vi. Then, the patch vector is

defined as P(vi) =

 ∑
vj∈Vk(vi)

w(ck,pj)f0(vj)

|Vk(vi)|

T

k∈[1,n2]

, where

w(ck,pi) = exp(− ||ck−p
′
i||

2
2

σ2) where ck is the coordinates’
vector of the kth patch cell center. This weighting enables
to take into account the repartition of the points in the cells’
patch to compute there mean feature vectors.

IV. APPLICATIONS IN CULTURAL HERITAGE

This section shows some examples of restoration and
inpainting with the proposed morphological filters on graphs
constructed from 3D point clouds. It is important to note that
the presented results show very dense point clouds and not
meshes.

A. Morphological Operators of Colored Point Clouds

Let P be a point cloud, that associates an intensity to each
point p ∈ P . From the latter point cloud, a weighted graph
G = (V,E, w) is first created using the method presented in
Sec. III (i.e., a kG nearest neighbor graph). Then this graph is
filtered using some morphological operators, as explained in
Sec. II-C. Fig. 3 shows some morphological processings of a
tower of the bishop castle point cloud2 obtained with an Optech
Lidar scanner. Non-local filtering results correspond to the case
where w is computed from patches as presented in Sec. III-C.
Cells of each patches are built from the averaging of colors of
neighbors points. Local filtering corresponds to the case where
w = 1 with a small neighborhood whereas non-local filtering
uses patches with a very large neighborhood. Results in Fig.
3 show that, with non-local filtering, the boundaries are better
preserved.

Let us now consider a noisy point cloud. A filtered version
of this point cloud can be obtained using the iterative algorithm
presented in Eq. 21. This latter algorithm is based on the use
of the ∞−Laplacian, which is a combinaison of erosion and
dilation processes. Fig. 4 shows the use of ∞−Laplacian to
filter the whole bishop castle point cloud. As it can be seen, the
non-local∞−Laplacian produces a very good visually simpli-
fied version of the point cloud: details corresponding to high
frequencies are wiped out, whereas boundaries corresponding
to low frequencies are preserved.

B. Color Inpainting on Point Cloud

Let P be a point cloud that has some colors to restore. The
set of points to restore is denoted by A and is given by the
user. From this point cloud P , a graph G = (V,E, w) is built
using the method presented in Sec. III. The similarity function
w : V × V → R is computed from patches, and the patch

2Gracefully given by www.cloudcasterlite.com

www.cloudcasterlite.com

at a vertex vi ∈ V contains the average colors of projected
neighbors of vi. Fig. 1 shows the inpainting on a scanned real
person using the algorithm presented in Eq.21. A part of the T-
shirt has been removed by the user and successfully inpainted.

Fig. 1: Real object (with 127,039 points) inpainting with
kG = 30000 and n2 = 81. From left to right respectively: the
original man (obtained from www.cyberware.com), the part to
be inpainted shown in yellow, the inpainted man.

C. Geometry and Color Inpainting on Point Cloud

Many real scanned objects in cultural heritage have real
defects, a typical one being missing parts of the object. The
challenge of the inpainting is then not only to restore the
color but also to restore the geometry of the missing part.
We propose thus a method to restore these missing parts. Let
f : V→ R3 be a function that associates to each node vi ∈ V
his 3D coordinates pi in a point cloud P1. A user manually
delineates the part of the object that has to be virtually repaired.
The algorithm is composed of two steps. First, the tangent
plane to the missing part is determined. The boundary of the
missing part is projected on this plane. Its convex hull is
computed and points are added in such a way that the sampling
allows to cover a dilated version of the convex hull. Let P2

denote this set of generated points. From the union P of P2

and the initial point cloud P1, a nearest neighbors graph is
constructed. The graph is weighted with patches constructed in
a different way than for color inpainting. Indeed, to enable the
generated points to fit correctly real parts of the object, patches
are constructed from P and filled with distances ||pi − p′i||2.
Then the algorithm presented in Eq.21 is used on points of
P2 but the patches (and also the weights) are updated after
each iteration to enable the iterative deformation of the points
of P2. Fig. 2 shows the full process of virtual restoration of a
antique broken vase. First the hole is filled with points to cover
the missing part, next the color of the geometricaly recovered
part is inpainted as in Sec. IV-B.

V. CONCLUSION

In this paper, we have shown how morphological PDEs
can be adapted on raw point clouds. Our proposal relies on
several key components: the use of the framework of PdEs
to adapt PDEs on graphs, a derived formulation of adaptive
morphological operators on graphs, a unified formulation of
interpolation and filtering with the∞−Laplacian, and a specfic
way to construct patches for point clouds. We have presented
results that show the benefits of the approach for applications
in cultural heritage.

REFERENCES

[AFCS11] P. Arias, G. Facciolo, V. Caselles, and G. Sapiro. A variational
framework for exemplar-based image inpainting. Int. J. Comput.
Vision, 93(3):319–347, 2011.

(a) (b) (c) (d)

(e) (f)

Fig. 2: Virtual restoration of a broken antique vase (with
220,994 points) with kG = 4000 and n2 = 81. (a) broken
vase with labelized part to restore, (b) points’ sampling on the
tangent plane, (c) geometric filtering result, (d) color inpainting
result, (e) zoom of a part of (b), (f) zoom of a part of (c).

[AGLM93] L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel. Axioms
and Fundamental Equations of Image Processing. Arch. Ration.
Mech. An., 123(3):199–257, 1993.

[AMN+98] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y.
Wu. An optimal algorithm for approximate nearest neighbor
searching fixed dimensions. J. ACM, 45(6):891–923, November
1998.

[BCM10] A. Buades, B. Coll, and J.-M. Morel. Image denoising methods.
a new nonlocal principle. SIAM Review, 52(1):113–147, 2010.

[BKP+10] M. Botsch, L. Kobbelt, M. Pauly, P. Alliez, and B. Levy. Polygon
Mesh Processing. AK Peters, 2010.

[BM94] R. W. Brockett and P. Maragos. Evolution equations for
continuous-scale morphological filtering. IEEE T. Signal. Pro-
ces., 42(12):3377–3386, 1994.

[Dig12] J. Digne. Similarity based filtering of point clouds. In CVPR
Workshops, pages 73 –79, june 2012.

[EDL12] A. Elmoataz, X. Desquesnes, and O. Lézoray. Non-local
morphological pdes and p-laplacian equation on graphs with
applications in image processing and machine learning. IEEE
J. Sel. Top. Signa., 6:764–779, 2012.

[ELB08] A. Elmoataz, O. Lezoray, and S. Bougleux. Nonlocal discrete
regularization on weighted graphs: A framework for image and
manifold processing. IEEE T. Image. Process., 17(7):1047–
1060, 2008.

[GCE09] M. Ghoniem, Y. Chahir, and A. Elmoataz. Geometric and texture
inpainting based on discrete regularization on graphs. In ICIP,
pages 1349–1352, 2009.

[GEL11] M. Ghoniem, A. Elmoataz, and O. Lézoray. Discrete infinity
harmonic functions: towards a unified interpolation framework
on graphs. In ICIP, pages 1361–1364, 2011.

[LEL12] F. Lozes, A. Elmoataz, and O. Lézoray. Nonlocal processing of
3d colored point clouds. In ICPR, pages 1968–1971, 2012.

[SBG11] F. Stanco, S. Battiato, and G. Gallo. Digital Imaging for Cultural
Heritage Preservation: Analysis, Restoration, and Reconstruc-
tion of Ancient Artworks. Digital Imaging and Computer Vision
Series. Taylor and Francis, 2011.

[TEL11] V.-T. Ta, A. Elmoataz, and O. Lézoray. Nonlocal pdes-based
morphology on weighted graphs for image and data processing.
IEEE T. Image. Process., 26(2):1504–1516, june 2011.

www.cyberware.com

L
oc

al
fil

te
ri

ng

(a) Original (b) Erosion (c) Dilation (d) Gradient (e) Opening (f) Closing

N
on

-l
oc

al
fil

te
ri

ng

(g) Original (h) Erosion (i) Dilation (j) Gradient (k) Opening (l) Closing

Fig. 3: Morphological operators on a colored point cloud (with 219,699 points) after 10 iterations with kG = 1000 and n2 = 25.
Local filtering: w = 1 and kG = 8. Non-local filtering: w is a similarity measure between patches.

(a) Original (b) 5 iterations (c) 30 iterations

(d) Original (e) 5 iterations (f) 30 iterations

Fig. 4: Non-local ∞−Laplacian on a bishop castle (with 1,815,044 points) after several iterations with kG = 1000 and n2 = 25.
From upper to bottom, view of the full castle, zoom at a corner of a tower of the castle.

	Introduction
	Weighted Graphs
	Notations and Preliminaries
	Difference Operators on Weighted Graphs
	Morphological Operators on Graphs
	Interpolation and Filtering on Weighted Graphs
	Interpolation
	Filtering
	Interpolation and filtering algorithms

	Construction of a weighted graph from a point cloud
	Graph Creation from Data Points
	Patch Orientation
	Patch Construction

	Applications in cultural heritage
	Morphological Operators of Colored Point Clouds
	Color Inpainting on Point Cloud
	Geometry and Color Inpainting on Point Cloud

	Conclusion
	References

