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ith the advance of three-dimensional (3-D) 
scanning technology, the cultural heritage 

community is increasingly interested in 3-D 
scans of cultural objects such as antiques, 
artifacts, and heritage sites. Digitization of 

these objects is commonly aimed at heritage preservation. Since 
3-D color scanning has the potential to tackle a variety of tradi-
tional documentation challenges, the use of signal processing 
techniques on such data can be expected to yield new applications 

that are feasible for the first time with the aid of captured 3-D 
color point clouds. Our contributions are twofold. First, we pro-
pose a simple method to solve partial differential equations (PDEs) 
on point clouds using the framework of partial difference equa-
tions (PdEs) on graphs. Second, we survey several applications of 
3-D color point cloud processing on real examples for which signal 
processing researchers can develop tools that can be valuable for 
museum specialists. The results of these methods have been 
reviewed by experts in the arts and found promising.

INTRODUCTION
Historians, archaeologists, and museum curators are interested in 
the preservation of pieces of art and want to make them available 
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to as wide an audience as possible. 
While direct encounters with the 
material pieces of art will always have 
an essential value for museum spe-
cialists, one important concern for 
museum curators is the preparation 
of catalogs for the purpose of object 
identification and examination. Tra-
ditionally, museum specialists have 
used two-dimensional (2-D) imaging 
techniques such as hand drawings, photographs, or document 
scans; see [1] and [2]. Unfortunately, these standard formats have 
the limitation of being selective and insufficient to record nuanced 
information about the complete shape, color, and texture of the 
object. In addition, some objects might undergo important 

changes over time, and in this case, 
the preservation of the object state 
(at a given temporal snapshot) is 
important. These issues can now be 
addressed by using 3-D color scan-
ning, which has the ability to record 
the complete object in great detail. 
The production of digital 3-D copies 
of pieces of art has therefore gained 
considerable attention from the cul-

tural heritage community [3]. The recent proliferation of com-
mercial 3-D digital scanning devices has led to the establishment 
of 3-D scanning as a practical reality in the field of cultural heri-
tage preservation [4]. The interest is evident: it provides a high-
precision digital reference of a cultural object and makes possible 
mass distribution and consultation. 

Most traditional signal processing methods in art investiga-
tion, such as filtering, PDE-based processing, and wavelets, are 
designed for data defined on regular Euclidean grids; see [2] and 
[5]. With 3-D color point clouds, the data takes the form of 
unstructured raw point samples without any attached geometry. 
Traditional signal processing tools cannot be directly applied on 
raw 3-D color point clouds since there is no structuring informa-
tion. In addition, it is not desirable to transform point clouds to 
meshes since this requires sampling points with a loss of accu-
racy and this is not compatible with the goal of high-fidelity 
conservation. Therefore it is essential to investigate a frame-
work for the adaptation of signal processing tools for 3-D point 
cloud processing. 

Our contributions are twofold. First, we propose a simple 
method for adapting and solving PDEs on point clouds. This 
method relies on the framework of PdEs on weighted graphs [6] as 
shown in Figure 1. Second, we survey several applications in 3-D 
color point cloud processing where signal processing tools can be 
applied to images of interest to art and museum specialists. From 
a signal processing point of view, most of these problems can be 
formulated as inverse problems for graph signals [7] (signals living 
on graphs representing 3-D color point clouds as in Figure 1).

3-D COLOR POINT CLOUDS
This section details how 3-D images of historic or art items can be 
acquired. We first provide a review of the benefits and disadvan-
tages of each of the current technologies. In cultural heritage, two 
main approaches are used to digitize a 3-D object. 

The first approach is photogrammetry. This is an image-based 
modeling technique where multiple photos are taken to retrieve 
3-D data coordinates. Photogrammetry requires only cameras and 
is the least expensive approach. However, it works only with small 
objects that have regular geometric shapes. The second approach 
is laser scanning. In this approach, the scanner acquires many 3-D 
points of the object to digitize. The precision is much better but 
both the cost and the acquisition time are greater. In this article, 
we focus on this latter type of 3-D raw point clouds. 

Figure 2 shows the acquisition of several World War II items, 
acquired by a Konica Minolta VIVID-9i noncontact 3-D laser 
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[FIG1] The PdEs framework on weighted graphs can be applied 
to solve PDEs on 3-D point clouds.

(a) (b) (c)

[FIG2] Some objects from World War II acquired with our 3-D 
scanner at the Mémorial of Caen. (a) A lamp. (b) A canteen.  
(c) Part of a destroyed church.
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scanner with a lens of f 25= -mm 
focal length at a distance of 0.6 m. 
According to the specification of 
the scanner, this corresponds to 
an accuracy of digitizing of 

.0 05!  mm. 
A point cloud is composed of raw data { , ..., } .d dD n1=  One 

associates to each d Di !  a 3-D coordinate vector { , ..., }p pP n1=  
with ( , , ) ,p p p p Ri i

x
i
y

i
z T 3!  and a color vector { , ..., }c cC n1=  with 

( , , ) .c c c c Ri i
R

i
G

i
B T 3!  We define for a given point cloud a function 

: ,f RD* 3"  which is either :f D P* "  or : .f D C* "  The func-
tion f *  is difficult to process and to analyze with classical signal 
processing techniques because the underlying point cloud lacks of 
any topological structure. Therefore, classical 2-D signal processing 
techniques cannot be considered and new dedicated graph signal 
processing techniques are needed. 

GRAPH CONSTRUCTION FROM POINT CLOUDS
The proposed approach to process point clouds starts by creat-
ing a weighted graph from a given point cloud. This section 
explains how to build such a graph. This latter method is com-
posed of two parts: first the topology of the graph is defined 
and then the edges of the graph are weighted. 

GRAPH CONSTRUCTION
This section discusses how to build a weighted graph from 3-D 
point clouds. The creation of a graph requires several steps. 

1) Vertices are created from the raw data. 
2) The vertices are connected with edges to build a proxim-
ity graph based on geometrical structure of the point cloud. 
3) Weights associated with each edge are calculated. 

Weights of edges are deduced from values associated to verti-
ces (the graph signal) and patches can be used to compute a 
better similarity value that takes account of local neighbor-
hood similarities. 

Graph creation from point clouds is challenging. Indeed, the 
structuring information is lacking, and the data is not naturally orga-
nized in a manifold. Therefore, the set of edges cannot be easily 
determined. Given a point cloud P  with associated coordinates 
{ ,, , }p p Rn1

3f !  there are many ways of associating a graph to 
such a data set. Since point clouds data exhibit a geometrical struc-
ture, proximity graphs are preferable: if two data points satisfy certain 
geometric requirements, the corresponding vertices in the graph are 
connected by an edge. To each raw data point ,d Di !  one associates 
a vertex of a proximity graph G  to define a set of vertices 

{ , , , } .v v vV n1 2 f=  Then, determining the edge set f  of the prox-
imity graph G  requires defining the neighbors of each vertex vi  
according to its embedding pi  using the Euclidean distance. Among 
many possible choices, we choose to consider the symmetric k-near-
est neighbor graph. An undirected edge ( , )v vi j  is added between 
two vertices vi  and v j  if the distance between pi  and p j  is 
among the k  smallest distances from either pi  or p j  to all the 
other data points. The construction of such a graph being compu-
tationally expensive for large point clouds, a k-dimensional tree is 
used [8] to speed up the k-nearest neighbor search. 

GRAPH WEIGHTS
Once the graph has been created, 
it has to be weighted. If one wants 
to ignore the vertex similarities, 
the weight function w  can be set 
to ( , ) ,  ( , ) .w v v v v1i j i j6 ! f=  To 

account for the similarities between the graph signals associ-
ated with the vertices, it is possible to use similarity functions 
based on distances to define the edge weights. Given an initial 
function ,:f RV m0 "  computing distances between vertices 
consists of comparing their features (as a function of ) .f 0  To 
this end, each vertex vi  is associated with a feature vector 

.( )P v Ri
q!  From this, a usual similarity measure is provided 

by the Gaussian kernel 

 ( , )
||

.
( ) ( ) | |P P

expw v v
v v

i j
i j

2
2
2

v
= -

-f p  (1)

Traditionally, one has simply ( ) ( ) .fP v vi i
0=  However, in 

image processing an important feature vector is provided by 
image patches [9]. In [10], we have proposed a new definition 
of patches that can be used with any graph representation asso-
ciated to meshes or point clouds. We detail the latter. 

PATCH DEFINITION
Around each vertex we build a 2-D grid (the patch) describing 
the neighborhood. This grid is defined on the tangent plane of 
the point (i.e., the vertex). The patch is oriented and finally 
filled in with a weighted average of the graph-signal values in 
the local neighborhood. We detail these two steps next. 

Orientation
The first step consists of estimating the orientation of each 
patch. The algorithm first deduces a tangent vector ( )t vi1  from 
the normal vector ) .(n vi  We use a local principal component 
analysis on the coordinates pi  to estimate this normal vector: 

( ) ) .(t nv vi i0 =  Let x y z, ,  be the three axes of a 3-D space, the 
first tangent vector ( )t vi1  is computed with  

 
( ) ( )
( ) ( )       

  | ( ) |t
t x t
t z z t   v v v
v v

1
otherwise
ifi i i

i i1 0

1 0 0

#

# $

=

= =Y)  
(2)

with #  the cross product and $  the dot product. The condition 
on the first line of (2) checks if the t1  and z  axis vector are col-
linear. If they are not collinear, t1  is calculated from the z  axis, 
otherwise the x  axis is used. Then a bitangent vector ( )t vi2  is 
computed by ( ) ( ) ( ) .t t tv v vi i i2 0 1#=  The orientation vectors 

( ), ( ), ( )o o ov v vi i i0 1 2  are then respectively assigned to ( ),t vi1  
( ), ( ) .t tv vi i2 0

Patch Construction 
The second step consists of constructing the patches. Given a 
point ,pi  a patch is defined for this point by constructing a 

IN CULTURAL HERITAGE, TWO  
MAIN APPROACHES ARE USED  

TO DIGITIZE A 3-D OBJECT.
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square grid around pi  on its tangent plane in the orientation of 
the patch defined by ) .( ,o o0 1  We fix the patch length l  manu-
ally. Let n  be the number of cells on a row of the patch. A 
square lattice of n2  cells is constructed around pi  with respect 
to the basis obtained from the orientation computation. Each 
cell has a side length of / .l n  A local graph is then considered 
that connects the vertex vi  to all the vertices v j  contained in a 
sphere of diameter .l 2  Then, all the neighbors v j  of vi  are 
projected on the tangent plane of pi  giving rise to projected 
points .pil  To fill the patch with values, these projected points 
pil  are associated with the cells with the closest center. The 
value of the cell is then deduced from a weighted average of the 
values ( )f v j0  associated with the vertices v j  that were pro-
jected onto the patch cell. This value is a spectral value (the 
point’s colors). The set of values inside the patch of the vertex 
vi  are denoted ( ) .P vi  Let ( )C vk i  denote the k th cell of the 
constructed patch around vi  with [ , ] .k n1 2!  With the pro-
posed patch construction process,  define the set 

( ) { | ( )}pV v v C vk i j j k i!= l  as the set of vertices v j  that were 
associated with the k th patch cell of .vi  Then, the patch vector 
is defined as : 

 ( )
( , )

( , ) ( )
,

c p

c p
P v

w

w f v

( )

( )

[ , ]

i
p

v V v
k j

p
v V v

k j j

k n

T0

1j k i

j k i

2

=

!

!

!

J

L

K
K
KK

N

P

O
O
OO/

/
 (3)

with ( /, ) ( )c p c pexpwp k i k i 2
2 2v= - - l  where the ck  are the 

coordinate vectors of the k th patch cell center. This weighting 
takes into account the distribution of the points in the cells of 
the patch by computing their mean feature vector. Figure 3(a) 
summarizes the method of patch construction. Figure 3(b) 
and (c) shows that points with similar geometric configura-
tions are close with respect to the patch distance. With the fol-
lowing (parameters are respectively .0 3v =  and ) .n 5=  

GRAPH SIGNAL PROCESSING
This section provides the mathematical definitions needed to 
understand the construction of weighted graphs from point clouds. 

PdEs ON WEIGHTED GRAPHS
The definitions presented here provide the basis on which it is 
possible to translate PDEs on graphs into PdEs on graphs. 
Most of these definitions are from [6]. 

DEFINITIONS
A weighted graph ( , , )wG V E=  consists of a finite set 

{ , , }v vV N1 f=  of N  vertices and a finite set V VE #1  of 
weighted edges. Assume G  to be undirected, with no self-loops 
and no multiple edges. Let ( , )v vi j  be the edge of E  that connects 
two vertices vi  and v j  of .V  Its weight, denoted by ( , ),w v vi j  
represents the similarity between its vertices. Similarities are 
usually computed by using a positive symmetric function 

:  w RV V "# +  satisfying ( , )w v v 0i j =  if ( , ) .v v Ei j "  The 
notation ~v vi j  is also used to denote two adjacent vertices. The 
degree of a vertex vi  is defined as ( ) ( , ) .v w v v~w i i jv vj i

d =/  Let 
( )H V  be the Hilbert space of real-valued functions defined on 

the vertices of a graph. A function ( )f H V!  assigns a real value 
( )f vi  to each vertex .v Vi !  We define the internal border of a set 

A V1  as { | ~ , } .A v A v v v Ai j i j2 7 2! !=-

Similarly, we define the space ( )H E  of functions that are 
defined on the set E  of edges. Given a function : ,f RV "  its p,  
and ,3  norms are given by 

 ( ) ,  ,f f v p1with/
p i

p

v

p1

Vi

31#=
!

c m/  (4)

 ( ) ,  .maxf f v pfor
v

i
Vi

3= =3
!

 (5)

DIFFERENCE OPERATORS ON WEIGHTED GRAPHS
Let ( , , )wG V E=  be a weighted graph and :w RV V "# +  a 
weight function that depends on the interactions between the ver-
tices. The difference operator [6], denoted : ( ) ( ),d H V H Ew "  is 
defined for all ( )f H V!  and ( , )v v Ei j !  by 

 ( ) ( , ) ( , ) ( ( ) ( )) .d f v v w v v f v f vw i j i j j i= -  (6)

The weighted gradient operator of a function ( ),f H V!  at a 
vertex ,v Vi !  is the vector defined by 

 ( ) ( ) ( ) ( , ) .f v d f v vw i w i j v
T
Vjd = !^ h  (7)

o2(vi)

o0(vi)

o1(vi)

pi

P (vi)
P (vi)

l

(a)

(b) (c)

[FIG3] (a) The interpolation of the content of the patch. l  is the 
patch length. ( )o vi0  and ( )o vi1  are the orientation of the patch 

( )P vi  at a point .pi  Elements marked by #` _  symbol 
correspond to the projected neighbors pil  of the point pi  on the 
patch. These projections are used to deduce values of each 
patch cell (a “o” symbol) by a weighted average of the 
associated graph signal values. (b) A point cloud with a selected 
vertex (in white), and the patch descriptor of that vertex.  
(c) A point cloud colored by the patch-based distance between 
all points and a given selected one, from most similar (in red) to 
least similar (in blue).
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The p,  norm of this vector is defined, for ,p 1$  as 

 ( ) ( ) ( , ) ( ) ( ) .f v w v v f v f v
~

/ /
w i p

v v
i j

p
j i

p p2 1

j i

d = -c m/  (8)

The external and internal morphological directional difference 
operators are defined as in [11] to be ( ) ( , ) ,d f v vw i j

!^ h  with 
( ) ( , )maxx x 0=+  and ( ) ( , ) ( , ) ( ) .min maxx x x x0 0=- = - = -- +  
The corresponding discrete upwind weighted gradients are 

 ( ) ( ) ( ) ( , ) .f v d f v vw i w i j v

T

Vj
d =! !

!
`^ h j  (9)

The p,  and the ,3  norms of these gradients are 

 ( ) ( ) ( , ) ( ) ( ) ,f v w v v f v f v
~

w i p
v v

i j
p

j i
p p

2

1

j i

d = -! !`^ h j= G/  (10)

 ( ) ( ) ( , ) ( ( ) ( )) ) .maxf v w v v f v f v
~w i v v i j j i
j i

d = -! !
3  (11)

p-LAPLACE OPERATORS ON WEIGHTED GRAPHS
The isotropic weighted p-Laplace operator, with [ , [,p 1 3! +  at 
a vertex v Vi !  is defined on ( )H V  by [6] as 

 ( ) ( ) , ) ( ( ) ( ) ,f v v v f v f v, ,
~

w p
i

i w p
i

v v
i j i j

j i

}D = -^ h/  (12)

where 

 ( , ) ( , ) ( ( ) ( ) ) .v v w v v f v f v2
1

,w p
i

i j i j w i
p

w j
p

2
2

2
2d d} = +- -  (13)

The 3-Laplacian is defined by [12] as 

 ( ) ( ) ( ) ( ) ( ) ( ) | | .f v f v f v2
1

,w i w i w id dD = -3 3 3
+ -8 B  (14)

From the definitions of these discrete difference operators on 
graphs, we are now in position to translate any PDEs that involves 
gradient, p-Laplacian or 3-Laplacian in their continuous formula-
tion onto Euclidean domains. In the sequel, we will consider directly 
the discrete formulation on graphs; see [6] for further details. 

REGULARIZATION ON GRAPHS
Here we present some PDEs on graphs and show a methodology 
to regularize the functions defined on the vertices of graphs. Let 

( )f H V0 !  be a given function defined on the vertices of a 
weighted graph ( , , ) .G wV E=  In a given context, this function 
represents an observation of a clean function ( )h H V!  cor-
rupted by an additive noise ( )n H V!  such that .f h n0 = +  
Regularizing functions on graphs using either isotropic or aniso-
tropic p-Laplacian, was proposed in [6] and [13]. Recently, a new 
family of p-Laplace operators based on a divergence formulation, 
which unifies both the isotropic and anisotropic p-Laplacian on 
graphs, has been proposed in [10]. 

To recover the uncorrupted function ,h  the processing task is 
to remove the noise n  from .f 0  A commonly used method is to 
seek a function ( ),f H V!  which is regular enough on ,G  and 

also close enough to .f 0  This can be formalized by the minimiza-
tion of an energy functional, that involves a regularization term 
(or penalty term) plus an approximation one (or fitting term). This 
article considers the following model: 

 ( )argminh J f f f2:
,

f
w p

0
2
2

RV
. m+ -

"

z  (15)

  ( ) ( ( ) ( ) )J f f vwhere ,w p v w i pVi
dz=

!

z /  (16)

is a gradient-based functional, and R!m  is a regularization 
parameter, called the Lagrange multiplier, that controls the 
tradeoff between the penalty term and the fitting term. The 
function ( )$z  is a positive convex function that penalizes large 
variations of f  in the neighborhood of each vertex. 

To solve (16), we consider the Euler–Lagrange equations 

 ( )
( )

( ( ) ( )) , ,f v
J f

f v f v v0 V,

i

w p
i i i

0

2
2

6 !m+ - =
z

 (17)

where the first term denotes the variation of (16) with respect to f  
at a vertex .vi  

In [10], we have proven that the solution of (17) can be 
obtained with the following iterative algorithm: 

 ( )
( ) ( )

f v
f v f v

,
, ,

~

,
, ,

~n
i

v v
p f

v v

i v v
p f

v v

n
j

1

0

i j

j i

i j

j i

m b

m b

=
+

+

z

z

+

/
/

 (18)

with 

 ( ) ( )f v f v,
, ,

,
, ,

v v
p f

v v
p f

j i
p 2

i j i jb a= -z z -  (19)

and 

( , )
( ) ( )
( ( ) ( ) )

( ) ( )
( ( ) ( ) )

.w v v
f v
f v

f v
f v, , /

v v
p f

i j
p

w i p
p

w i p

w j p
p

w j p2
1 1i j

d

d

d

d
a

z z
= +z

- -

l lf p  (20)

Figure 4 shows such color filtering of a given 3-D colored point 
cloud (obtained from a laser scan of a Mayan temple wall). 

APPLICATIONS
This section gives an overview of 3-D color point cloud applications. 
We illustrate the abilities of the proposed methods and algorithms 

(a) (b)

[FIG4] The filtering of a noisy Mayan wall with a preservation of 
edges: (a) a noisy point cloud and (b) a denoised point cloud.
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for signal processing on point clouds. 
(All of the 3-D point clouds we used 
are available at https://lozes.users.
greyc.fr/.) The typical graph signals 
are point (respectively vertices) coor-
dinates or colors. Given a weighted 
graph ( , , )wG V E=  associated to a 
point cloud, consider an initial graph 
signal :f RV m0 "  with .m 3=  This 
signal will be either the vertices’ coor-
dinates, in which ,( )f pvi i

0 =  or the vertices’ colors, in which 
( ) ( ( ), ( ), ( ) ),f v f v f v f vi

R
i

G
i

B
i
T0 =  where ( )f vX

i  denotes the X  
color component of the color at the vertex .vi

The approach we developed can be interesting within a cul-
tural heritage documentation, analysis, and dissemination per-
spective (according to the evaluation done by art expert Livio De 
Luca, as mentioned in the “Acknowledgments” section). First, 

the idea to introduce a method for 
structuring color/texture informa-
tion within a point-based 3-D repre-
sentation is particularly relevant 
within the 3-D digitization and doc-
umentation purposes. Points clouds 
(especially if enriched by color 
information) include the essential 
geometric information useful for 
several applications scenarios 

related to the heritage artifacts analysis (measurement, visual-
ization, semantic annotation, etc.). The point clouds processing 
methods we suggest (colorization, filtering and simplification, 
and inpainting of missing data and segmentation) can find sev-
eral effective applications within the digital driven process for 
documenting heritage buildings, archaeological sites, and 
museums’ objects. 

(a) (b) (c) (d)

[FIG5] The colorization of the bishop castle (approximately 1.5 million points) and a Bas-relief (with 506,000 points): (a) the original 
point cloud with annotations, (b) the colored point cloud, (c) the colorless Bas-relief with annotations, and (d) the colorized Bas-relief.

(a) (b) (c) (d) (e) (f)

[FIG6] The colorization of some cultural heritage statues [sizes of point clouds: (a) and (b) 253,000, (c) and (d) 254,000, (e) and  
(f) 791,000 points]. (a) Scribbles, (b) result, (c) scribbles, (d) result, (e) scribbles, and (f) result.

THE USE OF ADAPTIVE  
GEOMETRICAL WEIGHTS RELYING  
ON A GEOMETRIC FEATURE MAPS 

PATCHES ENABLES TO BETTER TAKE 
INTO ACCOUNT THE GEOMETRY  

OF THE POINT CLOUD DURING THE 
COLOR DIFFUSION AND BLENDING.
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COLORIZATION
Colorization is the process of adding colors on an uncolored 
object. Let :f V C0 "  be a function that assigns colors to vertices. 
Let A V1  be the subset of vertices with unknown colors and A2  
the subset of vertices with known values. The purpose of interpola-
tion is to find a function ft  approximating f 0  in V  minimizing 
the following isotropic total variation energy for :v Ai !  

 ( ) ( )min R f f v
(

,
) p

p

f H
w p w i

v AV
i

d=
! !

' 1/  (21)

with ( ) ( ),f v f vi i
0=  for .v Ai 2!  This can again be solved using 

the Euler–Lagrange equations 

 
( ) ( ) ,

( ) ( ) .
f v v A

f v f v v A
0,w p

i
i i

i i i
0

6
6 2

!
!

D =
=

)  (22)

The solution of (22) can be obtained with the iterative algo-
rithm in (18) with , .v A0 i6 2!m = -  The similarity function 

:w RV V "#  is computed from the comparison of patches of a 
geometric feature. This geometric feature is computed from the 
degree at a vertex using local height weights. These later weights 
are obtained from the similarity of height patches. Since the color-
ization starts from initial color annotations, not all the points are 
considered simultaneously. The colorization starts from the 
points that are neighbors to the annotated colors and the set 
of points to be colorized grows as the algorithm iterates. The col-
orization process stops when the set of vertices to colorize is 
empty and has converged to a stable solution. The use of adaptive 
geometrical weights relying on a geometric feature maps patches 
enables to better take into account the geometry of the point 
cloud during the color diffusion and blending. 

Figure 5 shows the colorization of the bishop castle and of a 
Bas-relief (a type of sculpture in which shapes are carved). 
 Figure 6 shows the colorization on some uncolored statues. 
Both cases show that the colorization allows restoration of col-
ors not captured by the 3-D scanner (the bishop castle case), but 
also allows placement of colors on an initially uncolored object 
(statues cases) for a more realistic rendering. 

FILTERING AND SIMPLIFICATION
Modern 3-D scanners can generate large point clouds with several 
million or billion points. The processing of such data is difficult. 
Instead of downscaling the point clouds and losing details, we pro-
pose a way to remove fine details without modify the appearance 
of the point cloud. It can be interesting to filter and simplify com-
plex and redundant point clouds for Web publication purposes. 

Let :f V P0 "  be the vertices coordinates. The iterative algo-
rithm of (18) allows filtering the geometry of 3-D objects using 

.0m =  Figure 7 shows the simplification of a point cloud of the 
Saint Eligius statue with a reduction in the number of points by 
77.6% using parameters .p 0 1=  and ( ) .s spz =  With such a 
simplified point cloud, the processing of any data on this point 
cloud, like colors, becomes computationally feasible. Indeed, 
reducing the quantity of data to process makes algorithms and 
renderings faster. Finally, the simplification could be leveraged in 

(a) (b)

(a) (b)

(c) (d)

[FIG7] The simplification of a point cloud of the Saint Eligius 
statue after 10,000 iterations. (a) The original point cloud  
(201,000 points) and (b) the point cloud simplified (45,000 points).

[FIG8] The restoration pipeline of a vase. The geometric part is 
first filled, then the missing color is inpainted: (a) the denoised 
vase, (b) the hole to fill in (boundary in yellow), (c) the filled-in 
hole, and (d) the inpainted hole.
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a meshing process by producing 
more regular polygons. 

INPAINTING OF MISSING 
DATA
Inpainting consists of construct-
ing new values for missing data in 
coherence with a set of known data. This can be the reconstruc-
tion of deteriorated parts of a 3-D object represented as a point 
cloud. This can be of interest for extending color information to 
missing parts (e.g., for virtual restoration purposes). Recent 
inpainting work tends to unify local and nonlocal approaches 
under a variational formulation (see [14] and references therein 
for more details). We consider that data are defined on a general 
domain represented on a graph ( , , ) .wG V E=  Let :f V C0 "  
be a function that assigns colors to vertices. Let A V1  be the 
subset of vertices with unknown values and A2  the subset of 
vertices with known values. The purpose of the interpolation is 
to find a function ft  approximating f 0  in V  and that corre-
sponds to solving 

 
( ) ( )

( ) ( ) .
,f v v

f v f v v
0 A

A
,w i i

i i i
0

6
6 2

!
!

D =
=
3'

 (23)

The infinity Laplacian is used here 
for interpolation since it provides 
better inpainting results than the 
isotropic p -Laplacian interpola-
tion (see [15]). Works in [10] have 
shown that this interpolation prob-
lem has a unique solution that can 

be obtained using the iterative algorithm presented in [12]. At the 
end of each iteration the set A2  is updated by A( )n 12 +  

,A A( ) ( )n n,2 2= -  and A( )n 12- +  is updated from .A( )n 12 +  The 
algorithm stops when the set of vertices to inpaint is empty. Fig-
ure 8 shows the restoration of a broken vase. The geometric part is 
corrected first, then the hole is filled; finally, the color is inpainted. 
One major objective of the cultural heritage is the preservation of 
an object. This inpainting algorithm provides a plausible virtual 
reconstruction of the original state of an object. The algorithm 
can also be used to remove and subvert parts of a damaged object, 
as in Figure 9. 

SEGMENTATION
Segmentation is the process of partitioning a 3-D object into mul-
tiple regions. Let :f RV "  be the function on a graph 

( , , )wG V E  to segment. The segmentation problem can be for-
mulated as a PDE to be solved on weighted graphs. This latter for-
mulation is based on front propagation using the eikonal equation 
to compute general distances on graphs. Let { , ..., }L l ln1=  be the 
set of labels and let ...S S Sn

0
1
0 0, ,=  be the corresponding set of 

labeled vertices. The goal of label propagation is to label each ver-
tex u V!  under the condition that u  is a neighbor of .Si0  Such 
a label propagation can be formulated as solving the eikonal equa-
tion on a graph G  as 

 
( ) ( , ) ( )
( ) ( ) ,

v t P x v
f v v x

V

V
w i p l i

i i

id !

! 1

z

z c

=

=
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(a) (b) (c) (d)

[FIG10] Segmentation of a vase by resolving the eikonal equation on graphs [770,000 points for (a) and 200,000 points for (d)]:  
(a) a vase with labels, (b) the result, (c) a vase with labels, and (d) the result.

(a) (b) (c)

[FIG9] The inpainting of a part of a damaged wall: (a) the object 
to inpaint, (b) the inpainting marker, and (c) the inpainting result.

INPAINTING CONSISTS  
OF CONSTRUCTING NEW VALUES  

FOR MISSING DATA IN COHERENCE  
WITH A SET OF KNOWN DATA.
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where :F RVl
3

i "  is a speed function, ( ) / ( ) ,P v F v1l i l ii i= ^ h  and 
: RV "z  represent the set of initials labels. The resolution of 

the eikonal equation (24) on a weighted graph has been investi-
gated in [16]. 

To segment a mesh or a point cloud according to the vertices 
colors, compute the similarity function :w RV V "# +  by tak-
ing into account the colorimetric distance as ,w e ( ) ( ) /f fv vi j

0 0 2
= v- -  

where :f V C0 "  are the colors associated at the node .v Vi !  
The function : RV "z  associates an initial label to each vertex 

.vi  The parameters are set as follows: , ( ) ,p F v2 1l ii= =   
.v Vi6 !  Figure 10 shows some segmentation results on point 

clouds after the resolution of the eikonal equation. Segmenta-
tion results are 3-D subsets of the original points clouds. These 
subsets can then be processed by applying the previous graph 
signal techniques such as filtering, simplification, inpainting, 
and colorization. 

CONCLUSIONS
This article has proposed an approach for the processing of 
functions on point clouds represented as graphs. We have 
shown how to translate PDEs using the framework of PdEs. 
The approach allows processing of signal data on point clouds 
(e.g., spectral data, colors, coordinates, and curvatures). We 
have applied this approach for cultural heritage purposes on 
examples aimed at restoration, denoising, hole-filling, inpaint-
ing, object extraction, and object colorization. The results 
demonstrate the many potentials of the point cloud approach 
to the processing of cultural heritage 3-D scanned objects. 
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