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Abstract

In this paper we present a methodology for nonlocal
processing of 3D colored point clouds using regulariza-
tion of functions defined on weighted graphs. To adapt
it to nonlocal processing of 3D data, a new definition
of patches for 3D point clouds is introduced and used
for nonlocal filtering of 3D data such as colored point
clouds. Results illustrate the benefits of our non-local
approach to filter noisy 3D colored point clouds (either
on spatial or colorimetric information).

1. Introduction

With the advent of nonlocal processing of images
[2], patch-based approaches have been recently very
popular. However, the notion of patches is difficult to
extend to 3D point clouds. Indeed, for images, the no-
tion of patch relies on the spatial organization of pixels
in a grid. With point clouds, the data to process is not
organized on any Cartesian grid and the neighbors of a
point have to be defined. Even with such neighbors de-
fined (e.g., by creating a graph), one has no insurance
that the number of neighbors of two different points
will be the same and this makes difficult the compar-
ison of these two neighborhoods. Therefore, there is
actually no natural expression of what is a patch on a
point cloud. Recently, some authors have experimented
nonlocal denoising point clouds [6]. However this ap-
proach does not take into account any orientation infor-
mation of the patch and is used only to denoise spatial
information and not any spectral information attached
to the points. In this paper, we propose an approach re-
lying on the framework of Partial difference Equations
(PdEs) to perform graph regularization [3] in order to
filter 3D colored point clouds. To do so we introduce an
innovative way to define patches for 3D points clouds
in order to perform nonlocal processing.

2. Weighted Graphs

In this section, we recall definitions on graphs and
operators on graphs. This constitutes the basis of the
framework of PdEs to regularize a function on a graph.

2.1 Definitions

A weighted graph G = (V,E, w) consists in a fi-
nite set V = {v1, . . . , vN} of N vertices and a finite
set E ⊂ V × V of weighted edges. We assume G

to be undirected, with no self-loops and no multiple
edges. Let (u, v) be the edge of E that connects ver-
tices u and v of V. Its weight, denoted by w(u, v),
represents the similarity between its vertices. Similari-
ties are usually computed by using a positive symmetric
function w : V × V → R+ satisfying w(u, v) = 0 if
(u, v) /∈ E. The notation u ∼ v is also used to de-
note two adjacent vertices. Let H(V) be the Hilbert
space of real-valued functions defined on the vertices
of a graph. A function f : V → R of H(V) as-
signs a real value f(vi) to each vertex vi ∈ V. The
space H(V) is endowed with the usual inner product
〈f, h〉H(V) =

∑
u∈V f(u)h(u), where f, h : V → R.

Similarly, one can defineH(E), the space of real-valued
functions defined on the edges of G.

2.2 Difference operators on weighted graphs

Let G = (V,E, w) be a weighted graph, and let
f : V → R be a function of H(V). The dif-
ference operator [3] of f , noted dw : H(V) →
H(E), is defined on an edge (vi, vj) ∈ E by:
(dwf)(vi, vj) =

√
w(vi, vj)(f(vj) − f(vi)). The

directional derivative (or edge derivative of f , at a
vertex vi ∈ V, along an edge e = (vi, vj), is de-
fined as: ∂vjf(vi) = (dwf)(vi, vj). The adjoint of
the difference operator, noted d∗w : H(E) → H(V),
is a linear operator defined by: 〈dwf,H〉H(E) =
〈f, d∗wH〉H(V) for all f ∈ H(V) and all H ∈ H(E).



We obtain the expression of d∗w by: (d∗wH)(vi) =∑
vj∼vi

√
w(vi, vj)(H(vj , vi)−H(vi, vj)). The di-

vergence operator, defined by −d∗w, measures the net
outflow of a function of H(E) at each vertex of the
graph. The weighted gradient operator of a function
f ∈ H(V), at a vertex vi ∈ V, is the vector oper-
ator defined by: (∇wf)(vi) = [∂vjf(vi) : vj ∼
vi]

T , ∀(vi, vj) ∈ E. The L2 norm of this vector rep-
resents the local variation of the function f at a vertex
of the graph. It is defined by [3]: ‖(∇wf)(vi)‖p =[ ∑
v∼vi

w(vi, vj)
p/2
∣∣f(vj)−f(vi)∣∣p]1/p.

2.3 Nonlocal regularization on graphs

In this section, one considers a general function f0 :
V ⊂ Rn → Rm defined on graphs of the arbitrary
topologies and we want to regularize this function. The
regularization of such a function corresponds to an op-
timization problem that can be formalized by the mini-
mization of an energy as a weighted sum of two energy
terms: 1

2

∑
vi∈V ||∇wf(vi)||22 + λ

2 ‖f − f
0‖22 The first

term is the regularization term, meanwhile the second
is the fitting term. The parameter λ ≥ 0 is a fidelity
parameter that specifies the trade-off between the two
competing terms. Works of [3] have shown that solu-
tions minimizing such an energy on weighted graphs
can be obtained by the following iterative algorithm
∀u ∈ V:


f (0)(vi) = f0(vi)

f (n+1)(vi) =
λf0(vi) +

∑
v∼vi w(vi, vj)f

(n)(vj)

λ+
∑
vj∼vi w(vi, vj)

(1)
Equation (1) describes a family of discrete diffusion
processes, which is parameterized by the structure of
the graph (topology and weight function w), the param-
eter λ. As shown in [3], modifying both graph topology
and graph weights enables to perform both local and
nonlocal filtering within the same framework of PdEs.
This iterative algorithm stops when a number of itera-
tions is reached, or when the difference ||fn+1−fn|| is
small.

3. Processing of 3D point clouds

In contrast to existing works, we propose to make the
most of weighted graphs to define the notion of patches
for 3D colored point clouds. In addition to providing an
innovative definition of patches for 3D point clouds, our
approach can be used to denoise spatial or/and spectral

properties of the point cloud. We review the principle
of our approach that relies on four steps.

3.1 Graph creation from 3D point clouds

Let us consider a point cloud P as a set of data points
{p1, . . . ,pn} ∈ R3. There are many ways of associ-
ating a graph, that encodes proximity between points,
to such a data set. To each data point we first asso-
ciate a vertex of a proximity graph G to define a set of
vertices V = {v1, v2, . . . , vn}. Then, determining the
edge set E of the proximity graph G requires defining
the neighbors of each vertex vi according to its embed-
ding pi using the Euclidean distance. We will denote as
D(vi, vj) = ‖pi−pj‖2 the Euclidean distance between
vertices and as B(vi ; r) = {pj ∈ Rn | D(vi, vj) ≤ r}
the closed ball of radius r centered on pi. We consider
two types of graphs: i) the ε-ball graph: vi ∼ vj if
pj ∈ B(vi ; ε), ii) The k nearest neighbor graph (k-
NNG): vi ∼ vj if the distance between pi and pi is
among the k-th smallest distances from xi to other data
points. The first step consists in associating a k-NNG
graph to the 3D point cloud.

3.2 Tangent plane estimation

Second step consists in computing an approximation
of the tangent plane of a point pi (or the vertex vi).
Classically (see [5]), the PCA of the covariance matrix
of the neighbors of vi in a local ε-ball graph around
vi is considered. Let p(vi) be the centroid of the
neighbors of vi. The covariance matrix of the local
frame is C =

[
pj − p(vi)

]
·
[
pj − p(vi)

]T
with

vj ∼ vi. From this matrix, eigenvalues λ0 < λ1 < λ2
and eigenvectors t0(vi), t1(vi), t2(vi) are computed.
Eigenvectors t1(vi) and t2(vi) form an orthogonal
basis of the tangent plane, and t0(vi) is normal to this
tangent plane (Figure 1).

Figure 1: Estimation of the tangent plane for a given
point pi according to a set of neighbors. The centroid
the set of neighbors of pi in B(vi ; r) is p(vi). Com-
puted tangent vectors are t1(vi) and t2(vi).



3.3 Orientation estimation

Third step consists in estimating orientations. In-
deed, patches are oriented from principal directions.
This means that directions of first and second axis
of the patch basis will coincide respectively with ma-
jor and minor principal directions. To compute these
principal directions at point pi, we use the argu-
ments of [1]. Principal directions and principal cur-
vatures can be estimated from the PCA of the co-
variance matrix of the normals of the neighbors of
pi projected on the tangent plane of pi. Let n(vj)
be the normal associated to node vj (this is esti-
mated [4] from the tangent plane normal as ±t0(vi)
) and ξ(vj) =

[
n(vj) · t1(vi);n(vj) · t2(vi)

]T
be the

projection of the normal n(vj) on the tangent plane
(t1(vi), t2(vi)). Then the covariance matrix Cn of
these projected normals of all the neighbors of a given
point (in the local epsilon-ball graph) is computed as
Cn =

[
ξ(vj)− ξ(vi)

]
·
[
ξ(vj)− ξ(vi)

]T
with vj ∼ vi

and ξ(vi) the centroid of the projected normals. From
this matrix, eigenvalues λ0 < λ1 and eigenvectors
c0(vi), c1(vi) are computed. Then, c0(vi), c1(vi) are
respectively estimations of the minor and major princi-
pal directions.

3.4 Patch construction

Final step consists in constructing the patches. Given
a point pi, defining a patch for this point comes to con-
struct a square grid around pi on its tangent plane. We
fix the patch length as l = 2 × maxvj∼vi ‖pj − pi‖.
A square lattice of n2 cells is then constructed around
pi with respect to the basis obtained from principal di-
rections c0(vi), c1(vi). Each cell has a side length of
l/n. Then, all the neighbors vj of vi are projected on
the tangent plane of pi giving rise to projected points
p′j . To fill the patch with values, these projected points
p′j are affected to the cells the center of which is the
closest. The value of the cell is then deduced from the
average of the values f0(vj) associated to the vertices
vj that where affected to the patch cell. This value can
be a spatial value (the projected points’ coordinates) or
a spectral one (the points’ colors). The set of values
inside the patch of the vertex vi are denoted as P(vi).
Figure 2 summarizes the method.

4. Experiments

The proposed framework is used to denoise coor-
dinates of noisy 3D point clouds and to filter colored
point clouds. Let f0 : V → R3 be the function

Figure 2: Interpolation of the content of the patch. l
is the patch length. c0(vi) and c1(vi) are the princi-
pal directions at a point pi. Elements marked by a “+”
symbol correspond to the projected neighbors of pi on
the patch. These projections are used to deduce values
of each patch cell.

that associates either 3D coordinates or RGB colors
to each node u ∈ V. From this function, a graph
G(V,E, w) is first created. We consider 10 nearest
neighbor graphs for all the experiments with 10 iter-
ations of algorithm (1). The graph is weighted with
w(vi, vj) = exp(− ||F(f

0,vi)−F(f0,vj)||2
σ2 ). If ones con-

siders local weights, F(f0, vi) = f0(vi). In the
case of nonlocal weights (based on patches), one has
F(f0, vi) = P(vi). We first consider the case of 3D
point clouds where f0(vi) = pi. Figure 3 presents re-
sults on two points clouds corrupted by Gaussian noise
and compares the effect of local versus nonlocal reg-
ularization. The benefit of our formulation of nonlo-
cal denoising of 3D point clouds is evident with a final
point cloud much more close to the shape of the orig-
inal uncorrupted one. Second we consider the case of
3D colored point clouds where f0(vi) = [Ri, Gi, Bi]

T .
Figure 4 presents results of color filtering on a given
3D colored point clouds (obtained from a laser scan of
a Maya temple wall). It is important to notice that this
point cloud is not a triangular mesh but a raw 3D col-
ored point cloud. As attended, local filtering tends to
remove many details while blurring borders. On the op-
posite, our formulation of nonlocal filtering achieves a
much better job while preserving edges and providing
uniform zones of similar textures.

5. Conclusion

In this paper we proposed a nonlocal processing of
3D colored point clouds. Using nonlocal regularization
on graphs to filter point clouds, we demonstrated how to
define the notion of patches for point clouds. To define
a patch a given point pi, its tangent plane is first deter-
mined and its principal directions are estimated. Then, a
grid lattice representing the patch is constructed around
the point pi and all the neighbors of pi in the graph are



Initial colored point cloud Local filtering Non-local filtering

Figure 4: Local and nonlocal (3× 3 patches) filtering of a 3D colored point cloud acquired by a laser scan of a Maya
temple wall. First line present the full point cloud. Second line presents a cropped and zoomed area.

Figure 3: Denoising of two noisy 3D point clouds co-
ordinates (in columns). From top to bottom lines: orig-
inal, corrupted (σ = 20), locally denoised, and nonlo-
cally (3× 3 patches) denoised point clouds.

projected onto the grid. On this grid, an interpolation
is finally used from projected points to fill the patch.
Experimental results have shown the benefits of the ap-
proach that enables the nonlocal filtering of 3D colored
point clouds within a unified formalism. Future works
will consider the case of inpainting 3D colored point
clouds.
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