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ABSTRACT

Mathematical morphology operators can be defined in terms
of algebraic (discrete) sets or as partial differential equa-
tions (PDEs). In our previous works [1} 2], we have pro-
posed a simple method to solve PDEs (Partial Differential
Equations) on dataset using the framework PdEs (Partial dif-
ference Equations) on graphs. In this paper, we propose to
apply morphological-based operators on unorganized dataset.

Index Terms— Generalized distance, Weighted graphs,
Unorganized data, Partial difference equations, Mathematical
morphology

1. INTRODUCTION

Mathematical morphology (MM) is a popular nonlinear
approach for image processing that has found numerous ap-
plications including shape and texture analysis, biomedical
image processing, document recognition or multiresolution
techniques. MM offers a wide range of operators to address
various image processing problems. These operators can be
defined in terms of algebraic (discrete) sets or as partial diffe-
rential equations (PDEs).

In our previous works [} 2], we have proposed a simple
method to solve PDEs (Partial Differential Equations) on da-
taset using the framework PdEs (Partial difference Equations)
on graphs. We formulated mathematical morphology opera-
tors (dilation and erosion) which can be used to perform se-
veral morphological processes on weighted graphs, such as
opening, closing, reconstruction and leveling.

In this paper, we adopt the PdE method and we focus
on some PDEs-based continuous morphological operators on
Euclidean domains : Dilation/Erosion, Eikonal Equation. One
strong benefit of our approach is that it enables to process any
information associated to raw dataset.

The paper is organized as follows. In section[2] we present
Partial difference operators on graphs. After that, in section 3]
we present Morphological operators on graphs. In section {4}
we present the construction of a weighted graph from unor-
ganized data and experiment morphological based processing

on 3D point cloud and higher dimensional data such as data-
bases. Last section concludes.

2. PARTIAL DIFFERENCE OPERATORS ON
GRAPHS

In this section, we recall definitions and operators on
graphs. This constitutes the basis of the framework of PdEs
on a graph [3] that enables to transpose PDEs on graphs. All
these definitions are borrowed from [4, |3} [1]].

2.1. Notations and Preliminaries

A weighted graph G = (V, E/, w) consists of a finite set
V ={vy,...,un} of N vertices and a finite set E C V x V
of weighted edges. We assume G to be undirected, with no
self-loops and no multiple edges. Let (u,v) be the edge of
E that connects two vertices v and v of V. Its weight, deno-
ted by w(u, v), represents the similarity between its vertices.
Similarities are usually computed by using a positive symme-
tric function w : V x V — IRT satisfying w(u,v) = 0
if (u,v) ¢ E. The notation u ~ v is also used to denote
two adjacent vertices. The degree of a vertex u is defined as
dw(u) = >, , w(u,v). Afunction f : V — IR of H(V)
assigns a real value f(u) to each vertex u € V.

2.2. Difference Operators on Weighted Graphs

Let G = (V, E, w) be a weighted graph, f : V' — IR be
a function of H(V) and w : V x V — R, a weight function
defined as a similarity measure between two vertices.

The directional derivative (or edge derivative of f, at a
vertex u € V, along an edge e = (u, v), is defined as :

Oy f(u) = Vw(u,v)(f(v) = f(u)). (1)

The external and internal morphological directional partial
derivative operators are respectively defined as [5] :

Of flu) = (duf(w), )
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where (z)* = max(x,0) and ()~ = — min(z, 0).
Discrete upwind non-local weighted gradients are defined

as :
T
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with w in subscript corresponds to the weight function defined
on graphs.

The £, norms and the £, of these gradients are defined
by :

p
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3. MORPHOLOGICAL OPERATORS ON GRAPHS

In this section based on discrete gradient on weighted
graphs, we present a class of discrete equation, that mimic
PDEs-based definition of erosion and dilation, Eikonal Equa-
tion.

3.1. Dilation and Erosion on graphs for filtering

The dilation and erosion of an initial function f*: V' — R
is defined by [1]] :
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for 1 < p < oo, with initial condition f(u,0) = f°(u). The
discrete expression of internal and external gradient consti-
tue direct spectral numerical scheme, with the usual notation

f™(u) = f(u,nAt), the generation iterative scheme for dila-
tion and erosion can be defined as :
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with £ = fO(u)

(®)
with £, norm the equation becomes :
Fr ) = fO () £ A Y (w(u,0)) 2|05 " ()P
veV
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Note in this general form, we have an algebric equation, in
which coefficients can be depend on data.
For w = 1 and for a grid graph, this scheme corresponds
to the first order discretization of Osher and Sethian scheme.
Now with £, norm this equation becomes :

PO (w) = £ (w) £ Atmax(yv/w(u, 0)|0; 1™ (u)])
(11)

with At = 1 and w = 1 (unweighted graph) the dilation and
erosion become respectively :

f(71+1) _ max(f(") (U), f(n) (’u,)) (12)

Y

FUD = min( £ (v), £ (u)) (13)

In the special case where At = 1, the dilation PdE can be

interpreted as an iterative non-local dilation (NLD) process,

and as a non-local erosion (NLE) for the erosion PdE. These
processes can be expressed as

fPH w) = NLD(f")(u) = f(u) + (V) (W)]oo; (14)
for the dilation, and

frHH(u) = NLE(f")(u) = f(u) = [[(Vo ) (W)]s, (15)

for the erosion.

This approach can be used to define other morphological
operators based on erosion ¢ or dilation J operators, such as
openings v = (d¢), closings ¢ = (ed), or morphological gra-
dients (6 — €). For instance we propose a formulation of the
non-local closing (NLC) operation that can be defined as :
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with ¢ € [0,2s], s € RT and
lifz >0
ign™ (z) = ' 17
sign”(z) {O otherwise. a7

This PdE has a time-dependent switching coefficient that
makes it act as a dilation ¢ for ¢ € [0, s[ and an erosion e
for t € [s,2s[. This formulation is different from the clas-
sical PDEs one [6]] and does not produce discontinuities at
the switching time. This can be interpreted as the following
non-local iterative process :

FH () = NLO(f™)(u)
=signt(t —s+ 1)NLE(f™)(u)  (18)
+ sign™t (s — )NLD(f™)(u).

Similarly, one can express the non-local opening NLO as an
iterative process.

3.2. Eikonal Equation on graphs

Let G(V, E,w) be a weighted graph. A front evolving on
G is defined as a subset €2y C V, and is implicitly represented
at initial time by a level set function ¢g = Up = xq, — X€26.
where x : V' — {0, 1} is the indicator function and 2§ is the
complement of €. In other words ¢ equals 1 in ¢ and —1



on its complementary.
The front propagation can be described by :

¢
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with F € H(V),andw : VXV — RT is the weight function.
In the case where F is defined non-negative on the whole
domain (2, the relation between the level set formulation (]E[)
and the well-known Eikonal Equation (F(z)||VT (z)|| = 1)
stems from the following change of variable : ¢(x,y) =t —
T'(x) (where T'(x) is the arrival time of the curve at a point
).
Using previous definitions of morphological evolution equa-
tions, one can formulate the same relation and obtain a PdEs-
based version of the Eikonal Equation, defined on weighted
graphs of arbitrary topology [7]. Because F is defined non-
negative, the evolution process described by Eq. (T9) can be
seen as a dilation process and the evolution equation rewritten

= F(u)[|(Vwd) ()|
= U,

19)

as:
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With a similar change of variable ¢(u) = t — T'(u), we have
0
g(U) = FII(Vi,t=T) ()| = FI(V,T)(w)]| = 1. 21)

Finally, with P = 1/F we obtain a discrete adaptation
of the Eikonal Equation on weighted graph, which descibes a
morphological erosion process, and defined as :

(Ve H)llp = P(u)
f(u)=0

YueV
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4. GRAPH CONSTRUCTION & EXPERIMENTS

In this section, we explain how a weighted graph can
be associated with unorganized data. Next, we show some
examples of restoration and segmentation with the proposed
morphological filters on graphs constructed from arbitrary
data.

4.1. From unorganized data to graph construction

First step consists in defining the sets V' and E from a gi-
ven dataset. Let us consider a dataset P as a set of data points
{P1,...,Pn} € R™. There are many ways of associating a
graph, that encodes proximity between points, to such a data
set. To each data point we first associate a vertex of a proxi-
mity graph G to define a set of vertices V = {vy, va,..., v, }.
Then, determining the edge set E of the proximity graph G
requires defining the neighbors of each vertex v; according to
its embedding p; using the Euclidean distance. We consider
the k Nearest Neighbors Graph (K-NNG) : v; ~ v; if the dis-
tance between p; and p; is among the k-th smallest distances
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Fig. 1: Morphological filtering on a colored point cloud
after 10 iterations with kg = 15 with operators de-
fined in sub-section [3.I] Gracefully given by |[www.
cloudcasterlite.com.

from p; to all the other data points. To conclude, the first step
consists in associating a k-NNG to the dataset. The value of
k will be denoted k¢ for the graph G associated with the da-
taset. To speed up the knn algorithm, a kD-tree can also be
used [8]].

Once the graph has been created, it has to be weighted. If
one does not want to take care of the vertices similarities, the
weight function w can be set to w = 1. A better one can be ob-
tained using patches [9]. For images, a patch 'ﬁ(vz) centered
at a vertex v; € V is a vector of values (e.g., coordinates, in-
tensities, ...) defined by P(v;) = (f°(v;) : v; € B(vi,n))T
where B(v;,n) is a square of size n? centered at v;. Using
patches, w : V' x V — R is defined by :

P - ﬁ(vm%) o

o2

w(v;,v;) = exp (

Extending the notion of a patch to three-dimensional point
cloud data is not an easy task. We have proposed a novel defi-
nition of patches that can be used for any graph representation
associated to meshes or 3D point clouds, see [10] for more de-
tails.

4.2. Experiments

Filtering of colored Point Clouds. Let P be a point
cloud, that associates an intensity to each point p € P. From
the latter point cloud, a weighted graph G = (V, E, w) is first
created using the method presented in sub-section[d.1] (i.e., a
kq nearest neighbor graph). Then this graph is filtered using
some morphological operators, as explained in sub-section
B-1} Figure [T] shows some morphological processings of a
tower of the bishop point cloud.

Shortest path computing on Point Clouds. We compute
the generalized distance on several point clouds by solving
Eikonal Equation, see Figure 2} We built the graph as a k-
nn with & = 5, in the coordinate space of the point cloud.
As the spatial discretization step is regular enough, we used
a constant weight function (w(u,v) = 1). The superimposed
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Fig. 2: Compute of geodesic distance on several 3D point
clouds with the Eikonal Equation on graph. Bottom line show
evolution of distance with minimal path linking two points of
the point cloud. Original data graciously provided by http:
//sketchfab.com/|under Creative Commons licence.

red line on the figure is the shortest path between the source
point (the point from which the distance is computed) and
an other point in the point cloud. This path was obviously
computed using the computed distance function.

Clustering on unorganized database. The Information
Retrieval (IR) task consists in matching objects stored in a da-
tabase. The United States Postal Service (USPS) handwritten
digits database contains grayscale handwritten digit images
scanned from digit O to 9 where each image is of size 16 x 16
pixels. In our experiment, we show the 50 first samples foun-
ded classified according distances computed on graphs (see

Figure3).

5. CONCLUSION

In this paper, we adopted the PdE method and we focused
on some PDEs-based continuous morphological operators on
Euclidean domains : Dilation/Erosion, Eikonal Equation. We
briefly presented the construction of a weighted graph from
unorganized data and show several examples of processing
such as the filtering, the computing of the shortest path or the
clustering on unorganized data. The presented works carried
out within the Graph Signal Processing project.
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