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Abstract. In this paper we introduce a new general class of partial
difference operators on graphs, which interpolate between the nonlocal
∞-Laplacian, the Laplacian, and a family of discrete gradient operators.
In this context we investigate an associated Dirichlet problem for this
general class of operators and prove the existence and uniqueness of
respective solutions. We propose to use this class of operators as general
framework to solve many interpolation problems in a unified manner as
arising, e.g., in image and point cloud processing.1

1 Introduction

Partial differential equations (PDEs) involving the p-Laplace and∞-Laplace op-
erators still generate a lot of interest both in the setting of Euclidean domains as
well as on discrete graphs. These operators in their different forms, i.e., contin-
uous, discrete, local, and nonlocal, are at the interface of many scientific fields
as they are used to model many interesting phenomena, e.g., in mathematics,
physics, engineering, biology, and economy. Some closely related applications
can be found in image processing, computer vision, machine learning, and game
theory, see e.g., [4, 7, 1] and references therein.

In this paper, we introduce and study a novel adaptive general class of Par-
tial difference Equations (PdEs) on weighted graphs. These equations are based
on finite difference operators which adaptively interpolate between two discrete
upwind gradients and the p-Laplacian operator on graphs. The advantage of the
involved family of operators is its adaptivity with respect to potential applica-
tions, i.e., to handle many local and nonlocal interpolation problems in image
and data processing within the same unified framework, e.g., inpainting, col-
orization, and semi-supervised clustering.

Furthermore, in order to solve the associated Dirichlet problem in the set-
ting of discrete graphs we propose an algorithm which can be used to unify
interpolation tasks on both conventional images and point cloud data.

1 AE is supported by the European FEDER Grant (PLANUCA Project) and the
project ANR GRAPHSIP.



The rest of this work is organized as follows. In Section 2 we provide basic
definitions and notations, which are used throughout this work. Furthermore, we
recall our previous works on PdEs on graphs and the p-Laplacian on graphs. In
Section 3 we derive a novel partial difference operator which interpolates between
the graph p-Laplacian, the graph ∞-Laplacian, and discrete gradient operators.
Then, we study an associated Dirichlet problem and prove the existence and
uniqueness of respective solutions. Section 4 presents several applications and
interpolation problems on real world images and point clouds. Finally, a short
discussion in Section 5 concludes this paper.

2 Partial difference operators on graphs

In this section we introduce the basic notations used throughout this paper.
Additionally, we recall various definitions of difference operators on weighted
graphs from previous works in order to define in this context derivatives, the
p-Laplace operator, and some morphological operators on graphs. More details
on these operators can be found in [11, 5, 18].

2.1 Notations and Preliminaries

A weighted graph G = (V,E,w) consists of a finite set V = {v1, . . . , vN} of
N vertices and a finite set E ⊂ V × V of weighted edges. We assume G to
be undirected, with no self-loops and no multiple edges. Let (u, v) be the edge
of E that connects two vertices u and v of V . Its weight, denoted by w(u, v),
represents the similarity between its vertices. Similarities are usually computed
by using a positive symmetric function w : V ×V → R+ satisfying w(u, v) = 0 if
(u, v) /∈ E. The notation u ∼ v is also used to denote two adjacent vertices. The
degree of a vertex u is defined as δw(u) =

∑
v∼u w(u, v). A function f : V → R

of H(V ) assigns a real value f(u) to each vertex u ∈ V .
The two upwind gradient norm operators ‖∇±wf

∥∥
∞: H(V ) → H(V ) for a

function f ∈ H(V ) can be defined as :

‖
(
∇±wf

)
(u)‖∞ = max

v∼u

(√
w(u, v)

(
f(v)− f(u)

)±)
, (1)

where (x)+ = max(x, 0) and (x)− = −min(x, 0).

2.2 Morphological Nonlocal Dilation, Erosion and Mean on graphs

These gradients were also used to approximate certain continuous Hamilton-
Jacobi equations on a discrete domain [18, 10]. For example, given two functions
f, µ : Ω ⊂ Rn → R, then any continuous equation of the form:

∂f(x, t)

∂t
= µ(x)‖∇f(x, t)‖p, (2)



can be numerically approximated in a discrete setting as :

∂f(u, t)

∂t
=µ+(u)‖

(
∇+
wf
)
(u, t)‖p − µ−(u)‖

(
∇−wf

)
(u, t)‖p, (3)

where µ+(u) = max(µ(u), 0) and µ(u)− = −min(µ(u), 0).
In particular, if µ ≡ 1, p = ∞, and if we employ a forward Euler time

discretization with ∆t = 1 (for stability we have ∆t ≤ 1), this equation can be
rewritten as :

fk+1(u) = fk(u) + ‖
(
∇+
wf

k
)
(u)‖∞, (4)

with fk(u) = f(u, k∆t). This can be interpreted as a single iteration of the
following nonlocal dilation type operator :

fk+1(u) = NLD
(
fk
)
(u), (5)

where NLD : H(V )→ H(V ) is defined as :

NLD
(
f
)
(u) = f(u) + max

u∼v

(√
w(u, v)

(
f(v)− f(u)

)+)
. (6)

Similarly, for the case µ ≡ −1 and p = ∞ we have NLE : H(V ) → H(V )
defined as :

NLE
(
f
)
(u) = f(u)−max

u∼v

(√
w(u, v)

(
f(v)− f(u)

)−)
. (7)

Likewise, for the case of the continuous Laplacian, the discretization leads
to the operator NLM : H(V )→ H(V ), which is the well-known nonlocal mean
filter [6], defined as

NLM(f)(u) =

∑
v∼u w(u, v)f(v)

δw(u)
. (8)

3 A new family of graph adaptive operators

In this section we propose a new family of discrete operators on weighted graphs
which corresponds to a graph operators with gradients terms and we investigated
an associated Dirichlet problem.

3.1 Definition

Based on the discussed PdE framework on graphs in Section 2, we are now able
to propose a novel family of operators denoted by ∆α,β,γ : H(V ) → H(V ) for a
function f ∈ H(V ) by:

∆α,β,γf(u) = α(u)‖∇+
wf(u)‖∞ − β(u)‖∇−wf(u)‖∞ + γ(u)∆w,2f(u), (9)



with u ∈ V , α(u), β(u), γ(u) : V → R and α(u) + β(u) + γ(u) = 1. By a simple
factorization of the ∞-Laplacian this new family of operators can be rewritten
as :

∆α,β,γf = 2 min(α(u), β(u))∆w,∞f(u) + (α(u)− β(u))+‖∇+
wf(u)‖∞

− (α(u)− β(u))−‖∇−wf(u)‖∞ + γ∆w,2f(u).
(10)

With α(u), β(u), γ(u) constants, we retrieve formulation presented in [12]. We
propose to defined α(u), β(u), γ(u) as :

α(u) =

∑
f(v)−f(u)>ε w(u, v)

δw(u)
β(u) =

∑
f(v)−f(u)<ε w(u, v)

δw(u)
, (11)

and γ(u) = 1−α(u)−β(u). Note that this family of operators is directly related
to the nonlocal average operator : ∆α,β,γf = NLA(f)− f, for which we refer to
the operator NLA : H(V )→ H(V ) as ’Nonlocal Average’ with

NLA(f)(u) = α(u)NLD(f)(u) + β(u)NLE(f)(u) + γ(u)NLM(f)(u), (12)

and the operators NLD, NLE, and NLM as introduced in Section 2.

3.2 Dirichlet problem

In the following we focus on a PdE related to the proposed family of graph op-
erators with gradient terms. In particular, we investigate an associated Dirichlet
problem. Let G = (V,E,w) be an undirected, weighted, and connected graph,
A ⊂ V a subset of vertices, the boundary of A defined as ∂A = V \A and
g : ∂A→ R. We consider the PdE as :{(

∆α,β,γf
)
(u) = 0, u ∈ A,

f(u) = g(u), u ∈ ∂A,
(13)

for the general case γ 6= 0. We could demonstrate as in [12] that the problem
(13) has a unique solution.

4 Unified interpolation for inverse problems on images
and point clouds

Many tasks in computer vision and image processing can be formulated as in-
terpolation problems. Image and video colorization [15], inpainting [2, 17], and
semi-supervised segmentation [13, 19] are examples of these interpolation prob-
lems. In general, interpolation consists of estimating appropriate values in regions
of missing data while staying coherent with respect to the given data. Until to-
day many methods have been developed and proposed for image interpolation
[13, 6, 11, 18]. Among them, a significant amount of methods is based on local
or nonlocal PDEs or variational methods.
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Fig. 1: Colorization of points clouds. (a) uncolored dwarf, (b) half-colored dwarf,
(c) full colored dwarf, (d) original point cloud, (e) colorized point cloud.

In this work we propose to use the in Section 3 introduced family of graph
operators as a unified framework. Among other tasks, this framework can be
used to solve semi-supervised segmentation or clustering, image inpainting, as
well as colorization of point clouds. To perform this task we propose to solve the
discussed Dirichlet problem from (13), for which A ⊂ V is the subset of vertices
associated to the missing information. Note that the initial value function g is
application-dependent and will be defined for each application in the sequel.

To solve (13) we make use of the following associated evolution equation
problem: 

∂

∂t
f(u, t) = ∆α,β,γf(u, t), u ∈ A,

f(u, t) = g(u), u ∈ ∂A,
f(u, t = 0) = f0(u), u ∈ A,

(14)

for which f0 is an initial function that is also application-dependent. To solve (14)
iteratively we use an explicit forward Euler time discretization. Using ∆α,β,γ =
NLA(f)− f and setting ∆t = 1, we get the following nonlocal average filter:

fn+1(u) = NLA(fn)(u) u ∈ A,
fn+1(u) = g(u), u ∈ ∂A,
f0(u) = f0(u), u ∈ A.

(15)

Graph construction : The first step in the graph construction, consists in
defining the sets V and E from a given dataset. Let us consider a dataset P as
a set of data points {p1, . . . ,pn} ∈ Rn. To each data point we first associate a
vertex of a proximity graph G to define a set of vertices V . Then, we determine
the edge set E from the neighbors of each vertex vi. We consider the k Nearest
Neighbors Graph (k-NNG): vj ∼ vi if the distance between pi and pj is among
the k-th smallest distances from pi to all the other data points. To speed up the
k-NN algorithm, a kD-tree can also be used [3].
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Fig. 2: Restoration of antique objects. (a) Original vasis, (b) Vasis to inpaint, (c)
Restored vasis, (d) Original wall, (e) Wall to inpaint, (f) Restored wall.

Once the graph has been created, it has to be weighted. If one does not
want to take care of the vertices similarities, the weight function w can be set to
w = 1. A better one can be obtained using patches [6]. For images, a patch P(vi)
centered at a vertex vi ∈ V is a vector of values (e.g., coordinates, intensities)

defined by P(vi) =
(
f0(vj) : vj ∈ B(vi, n)

)T
where B(vi, n) is a square of size

n2 centered at vi. Using patches, w : V × V → R is defined by: w(vi, vj) =

exp
(
−‖P(vi)−P(vj)‖22

σ2

)
. We have proposed a novel definition of patches to three-

dimensional point cloud that can be used for any graph representation associated
to meshes or 3D point clouds, see [16] for more details.

3D colorization : Image colorization is the process of adding colors to
monochromatic images. To colorize monochrome images the luminance channel
is used to determine pixels similarities which enable color diffusion from scribbles.
In the case of 3D data however, the intensity channel is missing and similarities
between points have to be determined in a different way. To the best of our
knowledge Leifman and Tal [14] are the only researchers which have proposed
a method for mesh colorization up to now. The colorization is then performed
by solving a constrained quadratic optimization problem (as in [15]). Let f0 :
V → R3 be a function that assigns RGB colors to vertices. Let A ⊂ V be the
subset of vertices with unknown colors and ∂A the subset of vertices for which
g : ∂A → R3 gives the user-specified color scribbles. Then, we are able to use
the iteration scheme (15) to perform 3D colorization of point cloud data. Figure
1 shows results of the method to colorize several 3D point clouds.

Nonlocal Inpainting : Digital inpainting can be simply formulated as re-
constructing a damaged or incomplete image by filling the missing information
in certain regions. In recent years many methods have been developed for inter-
polating geometry [8], texture [9], or both geometry and texture [2]. Among the
proposed interpolation methods a significant number of algorithms are based on
PDEs or variational methods, see e.g., [2] and references therein. Recent works
tend to unify local and nonlocal interpolation approaches [13]. With respect to
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Fig. 3: Illustration of segmentation on a colored 3D point cloud. See text for
more details. (a) Original, (b) Label, (c) Segmentation result.

(13) we propose to formulate the inpainting problem as follows: A is the set of
pixels with missing information, g : ∂A→ Rc, represents the known information
(for which c is the number of color channels of the image), and f : A → Rc
represents the image to be reconstructed. Using this notation we are able to
use the iteration scheme (15) to perform nonlocal inpainting. We illustrate this
approach in Figure 2 to inpaint the texture reconstruction on colored 3D point
cloud data.

Semi-supervised segmentation : We propose to consider the semi-super-
vised segmentation task as an interpolation problem, for which the function
to be interpolated is the label function specifying the partition. Considering
a partition into two classes A and B, with N = 2 the number of classes to
segment. A multi-phase segmentation can be performed by applying the iteration
scheme (13) N times and considering the label A as a class and B as the other
classes. In this case, the label function L, associating a class to each vertex,
defined as L : V → {Ci}i=1,...,N with {Ci} the set of class labels is computed
as : L(u) = Ci|fi(u) = max

j=1,...,N
fj(u). Figure 3 shows exemplary results of the

method to segment a 3D colored point cloud. The graph is built in a similar way
as in the subsection 4.

5 Conclusion

In this paper we have introduced a novel family of graph operators with gradi-
ent terms. These partial difference operators interpolate between nonlocal ∞-
Laplacian, nonlocal Laplacian, and gradient terms on graphs. We considered an
associated Dirichlet problem for this class of operators and have proven the exis-
tence and uniqueness of respective solutions. Finally, we have demonstrated the
applicability of these operators in terms of a unified framework to solve many
inverse problems in image processing, 3D point cloud processing.
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appliquées 90(2), 201–227 (2008)

[2] Arias, P., Facciolo, G., Caselles, V., Sapiro, G.: A variational framework for
exemplar-based image inpainting. IJCV 93(3), 319–347 (2011)

[3] Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal
algorithm for approximate nearest neighbor searching fixed dimensions. J. ACM
45(6), 891–923 (Nov 1998)

[4] Bertozzi, A.L., Flenner, A.: Diffuse interface models on graphs for classification of
high dimensional data. Multiscale Modeling & Simulation 10(3), 1090–1118 (2012)

[5] Bougleux, S., Elmoataz, A., Melkemi, M.: Local and nonlocal discrete regulariza-
tion on weighted graphs for image and mesh processing. International Journal of
Computer Vision 84(2), 220–236 (2009)

[6] Buades, A., Coll, B., Morel, J.M.: Nonlocal image and movie denoising. IJCV
76(2), 123–139 (2008)

[7] Bühler, T., Hein, M.: Spectral clustering based on the graph p-laplacian. In: Pro-
ceedings of the 26th Annual ICML. pp. 81–88. ACM (2009)

[8] Chan, T.F., Kang, S.H., Shen, J.: Euler’s elastica and curvature-based inpainting.
SIAM Journal on Applied Mathematics pp. 564–592 (2002)
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