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Abstract. A better quality of an image can be achieved through itera-
tive image reconstruction for positron emission tomography (PET) as it
employs spatial regularization that minimizes the difference of image in-
tensity among adjacent pixels. In our previous works, we have proposed
a simple method to solve PDEs on general images using the framework of
PdEs (Partial difference Equations) on graphs. In this paper, we propose
to apply morphological-based operators on graphs for processing of 2D
PET images. We apply this approach for to remove noise from the raw
projections data. The quality measurements and visual inspections show
a significant improvement in image quality compared to conventional
Algebraic Reconstruction Technique (ART).

Keywords: Image reconstruction; PET; post-reconstruction; ART al-
gorithm; PdE framework.

1 Introduction

The goal of positron emission tomography (PET) [1], is to provide molecular
information on the biology of many diseases inside the human body. Significant
advances are also taking place, both in instrumentation for data collection and
in computer methods for generating images from measured data. These methods
are developed to resolve the inverse problem known as ”reconstructing the image
from the projections”. However, in the case of limited views (low-dose imaging)
and/or limited angle (specific installation constraints), the data available for
inversion are not complete, the problem becomes more ill-conditioned and the
results Show significant artifacts. In these situations, an alternative approach of
reconstruction, based on a discrete model of the problem, consists in using an
iterative algorithm or a statistical medialization of the problem to compute an
estimate of the unknown object.

Typically, individual projections are distorted during data collection because
of noise due to low dose, which originates from the low energy positron due to
the positron decay. Positron Emission Tomography (PET) reconstruction are



usually ill-posed inverse problems and encounter significant amounts of noise [2,
3]. Traditional scanners generally use a reconstructive approach based on ana-
lytical filtered back-projection (FBP) that malfunctions in low-data situations
and weak signal-to-noise ratios [4]. The use of iterative image reconstruction
algorithms [5–8] can circumvent all these shortcomings. The most widely used
iterative algorithms in PET are the ML-EM (maximum-likelihood expectation
maximization) algorithm and its accelerated version OSEM (Ordered Subset
EM). The ML-EM method was introduced by Dempster et al in 1977 [9] and
first applied to PET by Shepp and Vardi [10]. The algebraic reconstruction
Technique (ART) [11], considered as an important class of iterative approaches,
assume that the cross-sectional section consists of a set of unknown, and then
establishes algebraic equations for the unknown in terms of measured projection
data.

In this paper, we adopt the PdE framework, and we focus on some PDEs-
based continuous morphological operators in the Euclidean domain: dilation /
erosion and mean curvature flows. Our motivation is to extend their applications
for the processing of 2D PET images. We apply this approach for to remove
noise from the raw projections data. The proposed approach is general in the
sense that it is independent of the method of reconstruction. As the experiments
show, our approach tends to improve the quality of several standard tomographic
reconstruction algorithms.

This paper is organized as follows: in Section 2, we present acquisition and
reconstruction methods. In Section 3, we present the proposed reconstruction
algorithm. Numerical examples are given in Section 4, where we present our
reconstruction results and compare the performance with other methods. Finally,
the last section concludes.

2 Acquisition and reconstruction methods

2.1 The PET imaging model

The reconstruction from projections of PET images is a particularity of the
general inverse problem of estimating the radioactive activity map related to a
measurement p by :

pi = Ai,jxj + ni (1)

In the process of PET imaging reconstruction, x is the reconstructed image, p is
the measurement of projection data, A is the system matrix whose component
Ai,j accounts for the probability of a photon emitted from pixel j being recorded
into bin i and ni is the random and scatter events that add a bias to each
detector.

2.2 Algebraic Reconstruction Technique (ART)

The ART is sequential method, i.e., each equation is treated at a time, since
each equation is dependent on the previous. The equation of ART [11] is given
by
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is the measured projection for the ith ray , and α is the relaxation parameter.
The second term on the left in equation (2), is the term of correction. The
process starts by making an intialguess. Observing equation (2), we see that
(a) this correction term is added to the current estimate in order to found the
new estimate and (b) the comparison consists in the subtraction of the estimated
projections from the measured projections. Also, we can easily see, that equation
(2) is used to update the value of the jth pixel on every ray equation.

3 PDEs on weighted graphs for images and point clouds

In this section we recall the PdE method [12]. This latter method enables us
to transcribe, for images and point clouds, many PDEs models and algorithms
designed for image processing. First, from a point cloud or an image, we construct
a local or non-local graph. Then we use the framework of PdE method, that
defined discrete difference operators on graph.

3.1 Graph construction

Considering a surface or a point cloud composed by a set of vertices, such as
S = {x1, x2, ...}. with xi ∈ R3. To each raw point xi ∈ S, one associates a
vertex of a graph G to defined a set of a set of vertices V . Data on image or
point cloud can be defined as a function f : V → R. The construction of such
a graph consists in modeling the neighborhood relationships between the data
through the definition of a set of edges E and using a pairwise distance measure
µ : V × V → IR+. In the particular case of images, edges based on geometric
neighborhoods are particularly well-adapted to represent the geometry.

The similarity between two vertices is computed by a similarity measure
s : E → IR+, which satisfies :

w(u, v) =

{
s(u, v), if (u, v) ∈ E
0, otherwise

(3)

Common similarity functions are the following :{
s0(u, v) ≡ 1,

s1(u, v) = exp
(
−µ
(
f0(u), f0(v)

)
/σ2
)
,

(4)

for which the variance parameter σ > 0 usually depends on the variation of the
function µ.



The function f used to describe the data at a node u can be considered
as a feature vector. Several choices can be considered for the expression of the
feature vectors, depending on the nature of the features to be used for graph
processing. In the context of image processing one can use a simple gray scale or
color feature vector Fu, or a patch feature vector F τu =

⋃
v∈Wτ (u) Fv (i.e, the set

of values Fv for which v is in a square window Wτ (u) of size (2τ + 1)× (2τ + 1)
centered at a vertex pixel u). Note that the latter vector allows to incorporate
nonlocal features for τ ≥ 1. Therefore, we need a new definition of patches that
can be used with any graph representation associated to meshes or point clouds.

3.2 Partial difference operators on graphs

In this subsection, we recall definitions and operators on graphs. This constitutes
the basis of the framework of PdEs on a graph [12] that enables to transpose
PDEs on graphs.

Notations and Preliminaries A weighted graph G = (V,E,w) consists of a
finite set V = {v1, . . . , vN} of N vertices and a finite set E ⊂ V ×V of weighted
edges. We assume G to be undirected, with no self-loops and no multiple edges.
Let (vi, vj) be the edge of E that connects two vertices vi and vj of V . Its weight,
denoted by w(vi, vj), represents the similarity between its vertices. Similarities
are usually computed by using a positive symmetric function w : V × V → IR+

satisfying w(vi, vj) = 0 if (vi, vj) /∈ E. The notation vi ∼ vj is also used to
denote two adjacent vertices. The degree of a vertex vi is defined as δw(vi) =∑
vj∼vi w(vi, vj). Let H(V ) be the Hilbert space of real-valued func tions defined

on the vertices of a graph. A function f : V → IR of H(V ) assigns a real
value f(vi) to each vertex vi ∈ V . H(V ) space is endowed with the usual inner
products.

Difference Operators on Weighted Graphs LetG = (V,E,w) be a weighted
graph, f : V → IR be a function of H(V ) and w : V ×V → R+, a weight function
that depends on the interactions between the vertices. The difference operator
[12] of f , noted dw : H(V )→ H(E), is defined on an edge (vi, vj) ∈ E by:

(dwf)(vi, vj) =
√
w(vi, vj)(f(vj)− f(vi)). (5)

The directional derivative (or edge derivative of f , at a vertex vi ∈ V , along an
edge e = (vi, vj), is defined as:

∂vjf(vi) = (dwf)(vi, vj). (6)

The external and internal morphological directional partial derivative operators
are respectively defined as [13]:

∂±vjf(vi) =
(
∂vjf(vi)

)±
. (7)



where (x)+ = max(x, 0) and (x)− = −min(x, 0). Discrete upwind non-local
weighted gradients are defined as:

(∇±wf)(vi) =
(

(∂±vjf)(vi)
)T
vj∈V

. (8)

The Lp norms and the L∞ of these gradients are defined by:

||(∇±wf)(vi)||p =

 ∑
vj∼vi

wp(vi, vj)
[
(f(vj)− f(vi))

±]p 1
p

(9)

||(∇±wf)(vi)||∞ = max
vj∼vi

(
w(vi, vj)|(f(vj)− f(vi))

±|
)
. (10)

∇± refers to both external and internal gradients (with respect to the sign).
The mean curvature Kw of a function f at u ∈ V on a graph is defined as:

Kw(u, f) =

∑
f(v)−f(u)≥0 w(u, v)−

∑
f(v)−f(u)<0 w(u, v)

δw(u)
. (11)

3.3 Regularization using mean curvature flows on graphs

In this section we consider a first transposition of PDEs on graphs and propose
a methodology to regularize functions defined on the vertices of graphs.

Let f0 ∈ H(V ) be a given function defined on the vertices of a weighted
graph G = (V,E,w). In a given context this function represents an observation
of a clean function h ∈ H(V ) corrupted by an additive noise n ∈ H(V ). A
common approach is to regularize f0 by morphological-based algorithms such as
the mean curvature flows.

The continuous mean curvature flow equation is formulated as :

∂φ

∂t
= div

(
∇φ
|∇φ|

)
|∇φ|, (12)

we propose to replace the continuous curvature by the curvature on the graph
and to use the following morphological scheme:{

∂f
∂t (u) = (Kw(u, f))+‖(∇+

wf)(u)‖∞ − (Kw(u, f))−‖(∇−wf)(u)‖∞
f(u, 0) = f0(u).

(13)

The time discretization leads to the following equation:

fn+1(u) =[1−∆t|Kw(u, fn)|]fn(u)+

∆t(Kw(u, fn))+ ·NLD(fn)(u)+

∆t(Kw(u, fn))− ·NLE(fn)(u),

(14)

with :
NLD(f)(u) =f(u) + ||(∇+

wf)(u)||∞
NLE(f)(u) =f(u)− ||(∇−wf)(u)||∞.

(15)

One can remark that this filter alternates between the non-local dilation of the
image or non-local erosion of the image according to the sign of the curvature.



(a) (b) (c)

Fig. 1: Input image: (a) PET phantom used in simulation study (b) Noise-free
sinogram (c) Noisy sinogram.

4 Results and Discussion

In this section, we compared the reconstruction results of the conventional ART
algorithm ,the proposed ART with local and nonlocal mean curvature flows
filtering algorithm (ART-MCFL and ART-MCFNL) and Simultaneous algebraic
reconstruction technique (SART)[14] for image reconstruction in PET.

4.1 Performance Evaluation

To evaluate the reconstructed results two criterions are calculated for the four
implemented algorithms in addition to the visual quality of the resulting recon-
structed images, in addition to the relative norm errors and the visual quality
of the reconstructed image. The quality measurement is listed below:

The peak signal-to-noise ratio (PSNR) is defined as

PSNR = 10 log
2552

1
MN

∑M
j=1

∑N
i=1(xj,i − x′

j,i)
2

(16)

The test image’s grey level value is denoted by x, with x′ being the same
value as in the reconstructed image.

Abdomen image acquired on a PET scan was used in this study to simulate
the few-view projection data (see Fig.1(a)). To create a projection data, the
simulated phantom image was forward projected using the system matrix to
generate the noise-free projection data (Fig.1.(b-c)). Once the simulated noise-
free sinograms were produced, a 30% uniform background was added to simulate
mean randoms and scatters.

4.2 Experiments

The resultant reconstructed images obtained from conventional ART, ART-MCF
and SART algorithms with 30 iterations, are shown in Fig. 2. From this Figure,
the visual quality of the reconstructed image of the phantom using the ART-
MCF algorithm is comparable to the other methods. As compared to some others
methods, the experimental algorithm preserves edges better. The effectiveness of



noise removal for the test algorithm was comparable to that of SART method;
however, the intensity in the ROI was appreciably higher in the latter. Compared
to the other methods, the ART-MCF method generates a superior intensity
profile while preserving the edges.

The resultant of quality measurements (PSNR) of reconstructed images ob-
tained from these algorithms by varying the number of iterations, are shown in
Fig. 3. The later demonstrates that ART-MCF is providing better quality mea-
surements than that of conventional ART and SART. The number of iterations
is much required in order to enhance the image quality.

All the visual-displays, the quality measurement and the line plots suggest
that the proposed ART-MCF algorithm is preferable to the other algorithms.
From all the above observations, it may be concluded that the proposed algo-
rithm is performing better in comparison to conventional algorithms and provide
a better reconstructed image.
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5 Conclusion

In this paper, we have adopted the PdE framework, and we have focused on
some PDEs-based continuous morphological operators in the Euclidean domain:
dilation/erosion and mean curvature flows. We have extended their applications
for the processing of 2D PET images. We briefly presented the construction of
a graph from 2D PET images and showed several examples, such as restoration,
denoising or object extraction for medical purposes.
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