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Abstract: Visual saliency is a computational process that seeks to identify the most attention drawing regions from a visual 
point. In this paper, we propose a new algorithm to estimate the saliency based on Partial Difference Equations (PdEs) method. 
A local or non-local graph is first constructed from the geometry of images. Then, the transcription of PDE on graph is done 
and resolved by using the mean curvature flow that can be used to perform regularization and the Eikonal equation for 
segmentation. Finally, an extended region adjacency graph (RAG) is built, which is extended with a k-Nearest Neighbor graph 
(k-NNG), in the mean RGB color space of each region in order to estimate saliency. Our algorithm allows to unify a local or 
non-local graph processing for saliency computing. Furthermore, it works on discrete data of arbitrary topology. For 
evaluation, we test our method on two different datasets and 3D point clouds. Extensive experimental results show the 
applicability and effectiveness of our algorithm. 
 

1. Introduction 

Visual saliency is an important part of the human 

attention mechanism, it allows humans to extract relevant 

and important information from raw input percept. Saliency 

estimation has become a valuable tool in image processing. 

However, saliency detection is still a difficult task because it 

requires a semantic understanding of the image. A large 

number of algorithms and methodologies have been 

developed in this task. 

The literature is been prolific in the field of visual 

attention on 2D images, which has been investigated from 

past five decades. [1, 2] were the first to provide theoretical 

foundations of visual attention mechanisms. [3] proposed 

saliency maps by thresholding the color, intensity and 

orientation maps. However, [4] devised a saliency detection 

model based on a concept defined as spectral residual. The 

model in [5] achieved the saliency maps by inverse Fourier 

transform on a constant amplitude spectrum and the original 

phase spectrum of images. [6] used kernel density 

estimation based nonparametric model to represent each 

region. [7] exploited object/background priors and cues at 

different levels for a better saliency detection performance 

by using a fusion of saliency and generic objectness. [8] 

incorporated the global information of the image into 

saliency models with different forms, the global uniqueness 

of color feature and some visual organization rules are 

combined with the local center-surround difference to 

generate the saliency map. [9] proposed a saliency detection 

model based on human visual sensitivity and the amplitude 

spectrum of quaternion Fourier transform. [10] exploited 

two contrast measures for rating global uniqueness and 

spatial distribution of colors in the saliency filter to generate 

saliency maps. In [11], saliency cues were calculated on 

three image layers with different scales of segmented 

regions and then hierarchical inference is exploited to fuse 

them into a single saliency map. [12] exploited the Bayesian 

saliency model, convex hull analysis on interest points and 

Laplacian sparse subspace clustering on super-pixels are 

used as low-level and mid-level cues, respectively. [13] 

proposed a saliency tree algorithm as a novel saliency 

model. However, global contrast and spatially weighted 

regional contrast have been used in [14], and a bottom-up 

visual saliency detection algorithm based on background 

and foreground seed selection has been proposed in [15]. In 

[31, 32] an improved wavelet-based salient-patch detector 

has been used to extract the visual informative patches. 

Therefore, the model developed in [33], is based on 

multiscale deep features and computed by convolutional 

neural networks. 

In recent years, [16] propose a global saliency which 

is obtained through Low-Rank Representation and local 

saliency which is obtained through a sparse coding scheme. 

[17] introduce an end-to-end deep contrast network for 

salient object detection, their deep network consists of two 

complementary components, a pixel-level fully 

convolutional stream and a segment-level spatial pooling 

stream. [18] aggregate various saliency maps based on 

continuous version of conditional random field with 

different learning and inference. Therefore, [19] present a 

discriminative regional feature integration approach, which 

learns a random forest regressor to discriminatively integrate 

the saliency features for saliency computation. [20] propose 

a novel framework to refine a saliency map derived from 

recent state-of-the-art salient object detection methods. 

However, [21] propose an effective saliency optimization 

scheme by taking account of the foreground appearance and 

background prior. 

While saliency in images has been extensively 

studied in recent years, there is very little work on saliency 

of point clouds, such as presented in [22, 23]. 
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The main goal of this paper is to propose a new 

definition of the saliency on graph. This new definition is 

based on the spectral analysis. An algorithm is given to 

estimate the saliency on images and point clouds based on 

the Partial difference Equations (PdEs) method. A local or 

non-local graph is first constructed. Then, the transcription 

of PDE on graph is done and resolved by using the 

framework of PdEs [24], such as: the mean curvature flows 

that can be used to perform regularization and filtering, the 

Eikonal equation for segmentation. Finally, an extended 

region adjacency graph (RAG) is built, which is extended 

with a K-NN graph, in the mean RGB color space of each 

region in order to estimate saliency. 

The rest of this paper is organized as follows. In 

Section 2, we provide basic definitions and notations on 

graphs that will be used in the subsequent sections. In 

Section 3, we present our proposed algorithm for saliency 

estimation. Then, we provide experimental results using our 

proposed approach to estimate the saliency on images and 

3D point clouds, in section 4. Finally, the conclusion of this 

work is presented in section 5. 

2. Morphological PDEs on graph  

In this section, we recall the definition of PDE 

method, which enables us to describe many PDEs models 

and algorithms designed for image processing and points 

cloud. 

Let 𝐺 = (𝑉,𝐸,𝑤)  be a weighted graph, where 

𝑉 =  𝑣1,… , 𝑣𝑁  is a finite set of 𝑁 vertices and 𝐸 ⊂ 𝑉 × 𝑉 

of a finite set of weighted edges. Let (𝑣𝑖 , 𝑣𝑗 ) ∈ 𝐸 connects 

two adjacent vertices 𝑣𝑖  and 𝑣𝑗 . The weight 𝑤(𝑣𝑖 , 𝑣𝑗 ) of an 

edge is defined by the function 𝑤:𝑉 × 𝑉 → ℝ+ if (𝑣𝑖 , 𝑣𝑗 ) ∈

𝐸 and 𝑤 𝑣𝑖 , 𝑣𝑗  = 0, otherwise.  

Let 𝑓:𝑉 → ℝ be a function of the Hilbert space 𝐻(𝑉) 

or real-valued functions defined on the vertices of a graph. 

The difference operator of 𝑓 , is defined by: 

 

𝜕𝑣𝑗   
𝑓 𝑣𝑗  =  𝑤 𝑣𝑖 , 𝑣𝑗   𝑓 𝑣𝑖 − 𝑓 𝑣𝑗    

(1) 

 

From this definition, the external and internal 

morphological directional partial derivative operators are 

respectively defined as [24]: 

 

𝜕𝑣𝑗
±𝑓 𝑣𝑖 = (𝜕𝑣𝑗𝑓 𝑣𝑖 )

± (2) 

 

where  𝑋 + = max 𝑋, 0  and  𝑋 − = −min 𝑋, 0 . 
Discrete upwind non-local weighted gradients are 

defined as: 

 

 ∇𝑤
±𝑓  𝑣𝑖 =   𝜕𝑣𝑗

±𝑓 (𝑣𝑖) 
𝑣𝑗∈𝑉

𝑇

 
 

(3) 

 

The Laplacian norms ℒ∞  and ℒ𝑝 , with 𝑝 =  1,2 , of 

these gradients are, respectively, defined by: 

 

  ∇𝑤
±𝑓  𝑣𝑖  ∞ = max

𝑣𝑗~𝑣𝑖
 𝑤 𝑣𝑖 , 𝑣𝑗    𝑓 𝑣𝑗  

− 𝑓 𝑣𝑖  
±
   

 

 

(4) 

 ∇𝑤
±𝑓(𝑣𝑖) 𝑝 =   𝑤𝑝 𝑣𝑖 , 𝑣𝑗    𝑓 𝑣𝑗  

𝑣𝑗~𝑣𝑖

− 𝑓 𝑣𝑖  
±
 
𝑝

 

1
𝑝

 

 

 

 

 

 

(5) 

 

with the following equality: 

 

  𝛻𝑤𝑓  𝑣𝑖  𝑝
𝑝

=   𝛻𝑤
+𝑓  𝑣𝑖  𝑝

𝑝
+   𝛻𝑤

−𝑓  𝑣𝑖  𝑝
𝑝
 (6) 

 

where 𝑣𝑗~𝑣𝑖  denotes two adjacent vertices. 

This latter recovers the usual expression of algebraic 

morphological external and internal gradients, which 

correspond to dilatation and erosion, respectively.  

The adapted well-known Eikonal equation on 

continuous domain is defined as [27]: 

 
𝜕𝑓

𝜕𝑡
 𝑣, 𝑡 = 𝐹 𝑣  ∇𝑓 𝑣, 𝑡  𝑝 , 𝐹 𝑣 ∈ ℝ 

 

(7) 

 

to the discrete following equation on graph [25]: 

 
𝜕𝑓

𝜕𝑡
 𝑣𝑖 , 𝑡 = 𝐹+ 𝑣𝑖  𝛻𝑤

+𝑓 𝑣𝑖  𝑝

− 𝐹− 𝑣𝑖  𝛻𝑤
−𝑓 𝑣𝑖  𝑝  

 

 

(8) 

 

This equation corresponds to a dilatation when 𝐹 > 0 

and an erosion when 𝐹 < 0. 

3. Proposed algorithm for saliency detection 

In this section, we present our proposed algorithm for 

saliency detection, as shown in (fig. 1). First, we construct a 

local or non-local graph. Then, we use the framework of 

PdE method, that defined discrete difference operators on 

graph [34, 35, 36]; we use the definition of the mean 

curvature flows on graphs and the morphological scheme, 

described in [25], that it can be used to perform 

regularization. Then, we discuss the connection of the 

Eikonal equation [27] to weighted graphs. After, we 

describe steps to compute the saliency descriptor on graphs 

based on the spectral analysis. Finally, we build an extended 

region adjacency graph (RAG), which is extended with a k-

NN graph, for which each vertex represents a region of the 

image and the associated function is the mean color of each 

region. 

 

3.1. Graph construction 
 
Considering an image or point clouds composed by a set of 

vertices, such as 𝑆 =  𝑥1 , 𝑥2 ,… , 𝑥𝑁 ⊂ ℝ3 , each raw point 

𝑥𝑖  associates a vertex of a graph 𝐺 to define a set of vertices 

𝑉. The construction of such a graph consists in modeling the 

neighborhood relationships between the data through the 

definition of a set of edges 𝐸 and using a pairwise distance 

measure 𝜇:𝑉 × 𝑉 → ℝ+  [26]. The weight function 𝑤 

defines a similarity between two vertices based on the 

Euclidean distance between the coordinates of the two 

associated points. This similarity is computed by a similarity 

measure 𝑠:𝐸 → ℝ+, which satisfies : 
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Fig. 1. Proposed saliency detection scheme. 

 

 

  

𝑤 𝑣𝑖 , 𝑣𝑗  =  
𝑠 𝑣𝑖 , 𝑣𝑗  , 𝑖𝑓  𝑣𝑖 , 𝑣𝑗  ∈ 𝐸

0, 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒
  

 

(9) 

 

The weighting of the edges is done from the 

following similarity function [24]: 

 

 
𝑠0 𝑣𝑖 , 𝑣𝑗  = 1

𝑠1 𝑣𝑖 , 𝑣𝑗  = exp  −𝜇(𝑓0 𝑣𝑖 , 𝑓
0 𝑣𝑗   /𝜎2

  
 

(10) 

 

where the variance parameter 𝜎 > 0 usually depends on the 

variation of the function 𝜇, and 𝑓:𝑉 → ℝ is used to describe 

the data at a node 𝑣𝑖 , which can be considered as a feature 

vector 𝐹𝑣𝑖  or a patch feature vector noted by: 

 

𝐹𝑣𝑖
𝜏 =  𝐹𝑣𝑗

𝑣𝑗 𝜖𝒲
𝜏(𝑣𝑖)

 
 

(11) 

 

where 𝒲𝜏(𝑣𝑖)  is a square window of size  2𝜏 + 1 ×
 2𝜏 + 1 centred at vertex pixel 𝑣𝑖  and 𝐹𝑣𝑖

𝜏  allows to 

incorporate nonlocal features for 𝜏 ≥ 1. 

In the case of point clouds, the patch vector is 

presented as the set of values inside each oriented patch of 

the vertex 𝑣𝑖   and defined as [26]: 

 

𝒫   𝑣𝑖 =  
 𝑤  𝑐 𝑘 ,𝓅 𝑣𝑗  𝑓

0 𝑣𝑗  𝑣𝑗∈𝑉𝑘  𝑣𝑖 

 𝑤  𝑐 𝑘 ,𝓅 𝑣𝑗 𝑣𝑗∈𝑉𝑘 𝑣𝑖 

 

𝑘∈ 1,…,𝑁2 

𝑇

 

 

(12) 

 

where 𝑉𝑘 𝑣𝑖 =  𝑣 𝓅 𝑣𝑗 ∈ 𝐶𝑘(𝑣𝑖)  is the set of vertices 𝑣 

that was assigned to the k-th patch cell of 𝑣𝑖 , 𝓅 𝑣𝑗  are the 

coordinates' vector of projected points, 𝐶𝑘(𝑣𝑖) denote the k-

th cell of the constructed patch around 𝑣𝑖  and 𝑐 𝑘 are the 

coordinates' vector of the k-th patch cell center. The 

weighting 𝑤  𝑐 𝑘 ,𝓅 𝑣𝑗 = exp  − 𝑐 𝑘 − 𝓅 𝑣𝑗 2

2

𝜎2   enables 

to take into account the point distribution with the patch 

cells in order to compute their feature vectors. 

 

3.2. Regularization using mean curvature flows on 
graphs 

 
The mean curvature flows filtering alternates 

between the non-local dilation or non-local erosion of the 

image according to the sign of the curvature. Equation (8) 

can be expressed by [25]: 
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𝜕𝑓

𝜕𝑡
 𝑣𝑖 , 𝑡 =  𝜅𝑤 𝑣𝑖 , 𝑓  

+
 𝛻𝑤

+𝑓 𝑣𝑖  𝑝

                    − 𝜅𝑤 𝑣𝑖 , 𝑓  
−
 𝛻𝑤

−𝑓 𝑣𝑖  𝑝

𝑓 𝑣𝑖 , 0 = 𝑓0(𝑣𝑖)

  

 

 

(13) 

 

where 𝜅𝑤  is the mean curvature of the function 𝑓 at 𝑣𝑖 ∈ 𝑉, 

defined as: 

 

𝜅𝑤  𝑣𝑖 , 𝑓 =
 𝑤 𝑣𝑖 , 𝑣𝑗  𝑠𝑖𝑔𝑛  𝑓 𝑣𝑖 − 𝑓 𝑣𝑗   𝑣𝑖∈𝑉

𝛿𝑤 𝑣𝑖 
 

(14) 

 

with  𝑠𝑖𝑔𝑛 𝑟 =  
+1 𝑖𝑓 𝑟 ≥ 0
−1 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  and 𝑓0 ∈ 𝐻 𝑉  

represents an observation of a clean function  ∈ 𝐻(𝑉) 

corrupted by additive noise 𝑛 ∈ 𝐻(𝑉). 

The time variable can be discretized  using explicit 

Euler method as [25]: 

 

𝜕𝑓

𝜕𝑡
 𝑣𝑖 =

𝑓𝑛+1 𝑣𝑖 − 𝑓𝑛(𝑣𝑖)

∆𝑡
 

(15) 

 

 The mean curvature flows algorithm used to 

regularize 𝑓0 corresponds to: 

 

𝑓𝑛+1 𝑣𝑖 =  1 − ∆𝑡 𝜅𝑤 𝑣𝑖 , 𝑓
𝑛   𝑓𝑛 𝑣𝑖 

+ Δ𝑡 𝜅𝑤 𝑣𝑖 , 𝑓
𝑛  

+
.𝑁𝐿𝐷 𝑓𝑛  𝑣𝑖 

+ Δ𝑡 𝜅𝑤 𝑣𝑖 , 𝑓
𝑛  

−
.𝑁𝐿𝐸 𝑓𝑛  𝑣𝑖  

(16) 

 

with: 

 

𝑁𝐿𝐷 𝑓  𝑣𝑖 = 𝑓 𝑣𝑖 +   ∇𝑤
+𝑓  𝑣𝑖  ∞  (17) 

 

𝑁𝐿𝐸 𝑓  𝑣𝑖 = 𝑓 𝑣𝑖 +   ∇𝑤
−𝑓  𝑣𝑖  ∞  (18) 

 

This filter alternates between the non-local dilation 

(NLD) or the non-local erosion (NLE) of the image 

according to the sign of the curvature. 

 
3.3. Segmentation with the Eikonal equation on 

Graphs 
 

The segmentation formulation is based on front 

propagation using the Eikonal equation [27] to compute 

general distances on graphs. In the case where 𝐹  is non-

negative on the whole domain, a translation of the equation 

(7), is expressed as: 

 

 
 ∇𝑤

−𝑓 𝑣𝑖  𝑝 = Ρ 𝑣𝑖 , ∀ 𝑣𝑖 ∈ 𝑉

𝑓 𝑣𝑖 = 0, ∀ 𝑣𝑖 ∈ 𝑉0

  
 

(19) 

 

for which 𝑉0 ⊂ 𝑉  corresponds to the initial set of seed 

vertices and Ρ 𝑣𝑖  is a potential function. This equation 

corresponds to a generalized form of distance computation 

on a Cartesian grid, by setting 𝑤 𝑣𝑖 , 𝑣𝑗  = 1 and Ρ 𝑣𝑖 = 1.  

For the case 𝑝 =  1,2 ,  the local solution at a 

particular vertex can be easily obtained with the iterative 

algorithm described in [27]. 
 

3.4. Saliency on Graph 

The saliency is real value estimated at each node of 

the graph. Let define 𝑉0 ⊂ 𝑉  and 𝑁 =  𝑉0 . Let 𝑊  be a 

square matrix of 𝑁 × 𝑁 weights, such as: 

 

 

𝑊 𝑣𝑖 , 𝑣𝑗  = 𝑤 𝑣𝑖 , 𝑣𝑗  , 𝑖𝑓  𝑣𝑖 , 𝑣𝑗  ∈ 𝐸 

𝑜𝑟 𝑊 𝑣𝑖 , 𝑣𝑖 = 1  𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

𝑜𝑟 𝑊 𝑣𝑖 , 𝑣𝑗  = 0 𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

  

  

Let 𝐷  be a diagonal matrix of 𝑁 × 𝑁  degrees, with 

𝐷 𝑣𝑖 , 𝑣𝑖 = 𝛿𝑤(𝑣𝑖)  and 𝐷 𝑣𝑖 , 𝑣𝑗  = 0  for 𝑣𝑖 ≠ 𝑣𝑗 . The 

degree of a vertex 𝑣𝑖  is defined as: 

 

𝛿𝑤 𝑣𝑖 =  𝑤 𝑣𝑖 , 𝑣𝑗  
𝑣𝑗~𝑣𝑖

 
 

(20) 

 

As shown in [28], the spectral decomposition of the 

matrix 𝑃 = 𝐷−1𝑊  gives a set of eigen vectors 
 𝜙1 ,𝜙2,… ,𝜙𝑁  associated with their eigen values  𝜆1 =
1 ≥  𝜆2 ≥ ⋯ ≥  𝜆𝑁 ≥ 0, solution of  𝑃𝜙𝑖 = 𝜆𝑖𝜙𝑖 . 

The saliency is defined as Γ𝑁 𝑣𝑖 =  𝜆𝑖
𝑁
𝑖=1 , which is 

equals to the trace of the matrix 𝑃 , thus Γ𝑁 𝑣𝑖 =
 𝑃 𝑖, 𝑖 =𝑁
𝑖=1   𝑊(𝑖, 𝑖) 𝐷 𝑖, 𝑖   =   1 𝛿𝑊(𝑣𝑗 )  ,𝑁

𝑖=1
𝑁
𝑖=1  

because 𝑊 𝑣𝑖 , 𝑣𝑖 = 1.  

We slightly modified the saliency formula Γ𝑁 𝑣𝑖  to 

define the saliency on graph at a node 𝑣𝑖 , such as: 

 

Γ 𝑣𝑖 =  
1

1 + 𝛿𝑁(𝑣𝑗 )
𝑣𝑗~𝑣𝑖

 
 

(21) 

 

with 𝛿𝑁 𝑣𝑖 =
𝛿𝑊 (𝑣𝑖)

 𝑣𝑗~𝑣𝑖 
 the normalized degrees at a node 𝑣𝑖 .  

Finally, the normalized saliency is determined with: 

𝛿 𝑣𝑖 =
Γ(𝑣𝑖)

 𝑣𝑗~𝑣𝑖 
. 

 

3.5. Images reconstruction 
 

To transpose the data into "segmented" 

representation in the original database to obtain the saliency, 

we associate region-based graphs that can be adjacency 

graphs (RAGs) or k-nearest neighbour graphs (k-NNGs). 

Any discrete domain can be modelled by a weighted 

graph where each data point is represented by a vertex 

𝑣𝑖 ∈ 𝑉. This domain can represent unorganized or organized 

data where functions defined on 𝑉 correspond to the data to 

process. In the case of unorganized data; k-NNG is used 

where each vertex 𝑣𝑖  is connected with its k-nearest 

neighbours according to a pairwise distance 𝜇. In the case of 

structured data; Region adjacency graphs (RAG) can be 

built for any structured data represented by a graph, where a 

region 𝑅𝑖  is defined as a set of connected vertices such that 

 𝑅𝑖 = 𝑉 and  𝑅𝑖 = ∅. Two regions 𝑅𝑖  and 𝑅𝑗  are adjacent 

if ∃𝑣𝑖 ∈ 𝑅𝑖  𝑎𝑛𝑑 𝑣𝑗 ∈ 𝑅𝑗  𝑣𝑗~𝑣𝑖   [24, 27]. 

4. Experimental results 

In this section, we present our experimental steps and 

its application on 2D images and 3D point clouds. Then, we 

test our method on the 5000 benchmark test images of 

MSRA dataset used in [29] and 300 images of SOD dataset 

[30], these images database include original images and 



5 

 

their corresponding ground-truth saliency maps. Finally, we 

compare our results with results of other methods in the 

state of the art.  

The quantitative evaluation for a saliency detection 

algorithm is to see how much the saliency map from 

algorithm overlaps with the ground-truth saliency map, and 

then for a ground-truth saliency map 𝐺𝑇  and the detected 

saliency map 𝑆, we have:  

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
 𝑆𝑥𝐺𝑇𝑥𝑥

𝑆𝑥
 

 

(22) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
 𝑆𝑥𝐺𝑇𝑥𝑥

𝐺𝑇𝑥
 

 

(23) 

 

Then, we calculate F-measure, which is the harmonic 

mean of precision and recall, to evaluate the overall 

detection performance as follows: 

 

𝐹_𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1 + 𝛽2) × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝛽2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 

 

(24) 

 

where the coefficient 𝛽2 is set to 0.3 as used in literature. 

The Mean Absolute Error (MAE) is also used to 

measure how much the foreground is highlighted and the 

background is suppressed. The MAE is defined as: 

 

𝑀𝐴𝐸 =
1

𝑤. 
  𝑆𝑥 − 𝐺𝑇𝑥  

𝑤 .

𝑥
 

 

(25) 

 

 

4.1. Experiments 
 

Our experimental steps are presented in (fig. 1) and 

summarized as follows: 

1. The creation of local or non-local graph consists of 

the creation of vertices from raw data to process, 

these vertices are connected with edges and weights 

associated to each edge are deduced. In local graph, 

only local close neighbours are considered during the 

creation of edges.  In a non-local graph, edges are 

created between vertices that are spatially far apart. 

Weights on each edge are deduced from values 

associated to vertices and patches can be used to 

compute a better similarity value accounting local 

neighbourhood similarities. In the case of point 

clouds, the patch is constructed from two-

dimensional grid describing the close neighbourhood 

around each vertex, this grid is defined on the tangent 

plane of the vertex. Then, the patch is oriented 

accordingly in order to be filled in with a weighted 

average of the graph signal values in the local 

neighbourhood.  [26] 

2. The filtering consists to provide illustrations of mean 

curvature flows, which enables to group similar 

vertices around high curvature regions. The time 

discretization iterative algorithm, equation (16), has 

been used to perform regularization. Filtering results 

of local and non-local graphs are illustrated in (fig. 2 

and 3), respectively.  

 

 
 

Fig.  2. Illustration of local filtering (first line) and their 

corresponding saliency (second line) after (a) 20, (b) 50, (c) 

100 and (d) 200 iterations. 

 

 
 

Fig. 3. Illustration of non-local filtering (first line) and their 

corresponding saliency (second line) after (a) 20, (b) 50, (c) 

100 and (d) 200 iterations and  5 × 5  𝑝𝑎𝑡𝑐 𝑠𝑖𝑧𝑒. 

 

3. Segmentation consists of partitioning the filtered data 

to multiple regions using the Eikonal equation (19) 

and grouping pixels in a region map while preserving 

boundaries, as illustrated in (fig. 4), in order to 

reduce image complexity.  

 

 
 

Fig. 4. Illustration of color segmentation (first line) and 

their corresponding saliency (second line) according to 

random seeds percentage 
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4. This latter gives a reduced version of the image and 

allows us to reconstruct a new k-NN graph. In the 

other hand, such partition can be easily transformed 

in a Region Adjacency Graph (RAG), which can be 

used as a simplified version of the initial image that 

preserves texture information and strong boundaries.  

 

4.2. Results and discussion 
 

In this sub-section, we present the results of saliency 

detection on 2D images and 3D point clouds. 

First, we start by presenting the results of saliency on 

2D images. On all the experiments, the following 

parameters have been used: the k nearest neighbour equal to 

3 for graph creation with 𝜎0 = 15, ∆𝑡 = 0.5, random seeds 

= 20% for the region. k-NN = 8 and 𝜎 = 10 in each region 

for graph reconstruction. 

Fig. 2 and 3, show an example of local and nonlocal  

with (5 × 5 𝑝𝑎𝑡𝑐𝑠) filtering of a 2D image after 20,50, 100 

and 200 iterations, respectively. We can see that nonlocal 

structure better preserves image details and gives good 

precision after 100 iterations. 

Fig. 4 illustrates saliency with the variation of 

random seeds percentage in non-local graph and after 100 

iterations. The random seed controls the precision of the 

segmentation (respectively from low to high for a coarse to 

fine segmentation). The more segmentation is the coarse 

segmentation, the more saliency computing will be fast. A 

good tradeoff between precision and speedness is 20%, as 

shown in table 1.   

 

Table 1 Evaluation of Random seeds according to the 

number of mean curvature flow iterations using nonlocal 

graph of MSRA dataset images 

 

Seeds F-measure MAE 

 20 50 100 20 50 100 

       

5% 0.416 0.572 0.664 0.263 0.243 0.229 

10% 0.612 0.750 0.801 0.240 0.221 0.206 

20% 0.730 0.793 0.857 0.229 0.210 0.165 

       
 

 

Fig. 5 presents precision-recall curves of local and 

non-local graphs on MSRA and SOD datasets, after 100 

iterations with 20% random seeds by using the same 

parameters described above. We can notice that the use of 

non-local graph on the MSRA database gives the best 

performance. 

Moreover, as shown in fig. 6, we can remark the 

capability of processing different scenes for our approach 

using non-local graph, it can also highlights the internal 

object with their contour by detecting the outlines of the 

saliency and their interior of small, large and transparent 

objects. However, it cannot suppress the background well in 

the case of complex textures and multiple objects. 

Then, we illustrate results of local and non local 

saliency detection in 3D point clouds models are obtained 

from (http://www.cloudcasterlite.com) using the same 

parameters of 2D images, as shown in  Fig. 7. 

The saliency is obtained from the coordinates of the 

nodes to build the patch of 100 cells and on the colors of the 

nodes during patch construction. It can be noted that the 

planar regions appear non-salient while the fluctuating 

regions are considered salient, thus the regions having 

significant color variations appear salient. Knowing that 

warm colors (red and yellow) present a high saliency then 

cold colors (blue and green) present a low saliency. We can 

also notice that the saliency obtained from the local graph is 

less important than that obtained from the non-local graph. 

 

   
 

Fig. 5. Precision-recall curves of proposed saliency model 

on MSRA and SOD dataset. 

 

 
 

Fig. 6. Selected results of our approach. 

 

4.3. Comparison  
 

In this subsection, we compare the performance and 

computational time of our approach with several state-of-

the-art methods including: SVO [7], CA [8], SF [10], HS 

[11], RC [14], MDF [33], DCL [17], DRFI [19] and FABP 

[21]. 
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Fig. 7. Saliency detection in 3D point clouds (a) original, 

saliency map of (b) local graph and (c) non-local graph. 

 

From fig. 8, 9 and 10, the proposed method shows 

better performance in Precision-Recall curve, F-measure, 

and MAE value on the both MSRA and SOD datasets than 

SVO [7], CA [8], SF [10], HS [11], RC [14] and FABP [21]. 

So, the unsupervised methods, such as SVO [7], CA [8] and 

RC [14] have a weak background suppression, as shown in 

fig. 11. Therefore, SF [10] has a better ability to suppress 

the background but it cannot highlight the whole object 

when the object consists of different colors. However, 

parameters on HS [11] and FABP [21] are crucial to 

performance. Otherwise, supervised learning methods (fig. 

12), such as: DCL [17], MDF [33] and DRFI [19] show 

better performance than ours; DCL [17] only simply fuse the 

skip layers with different scales for more advanced feature 

representation building, MDF [33], trained a deep neural 

network for deriving a saliency map from multiscale 

features extracted using deep convolutional neural networks, 

and DRFI [19] fuses the saliency scores across multiple 

levels, yielding the saliency map but it has limited ability to 

discover all the salient objects within one image. 

Our saliency graph-based algorithm has the benefit to 

unify local and non-local processing. Furthermore, the 

presented approach works on discrete data of arbitrary 

topology, so the same algorithm works on both 2D images 

and 3D point clouds. Moreover, as opposed to deep learning 

approaches, our approach is ready to use without the need to 

select hyper-parameters nor compute databases. 

 

The proposed framework has been implemented in 

C++. The computation time of our proposed framework is 

17.09 s per image (300 × 400) on an Intel i7-3612QM CPU 

(2.10 GHz) and 8 GB of memory, as shown in table 2, it 

takes more times compared with other methods, which is a 

limitation. 

 

Table 2 Comparison of the average running time 

 

Method CA RC SF FABP Ours  

      

Code  Matlab C++ C++ Matlab C++ 

Times (s) 53.1 0.253 0.202 4.2361 17.09 

      
 

5. Conclusion and future work 

In this paper we have applied the framework of PdEs 

on weighted graphs which is new approach for saliency 

detection on images and point clouds, by exploiting a new 

definition of the saliency on graphs, the mean curvature 

flows for filtering, Eikonal equation for segmentation and 

RAG and k-NN graph reconstruction. Experimental results 

show the applicability and effectiveness of our saliency 

model. In the near future, we would like to add another 

algorithm in order to improve the saliency results by 

ensuring good background suppression and faster 

computation time. It is also proposed, a deeper study of 

saliency on 3D point clouds. 

 

 
(a) 

 
(b) 

 

Fig. 8. Precision-recall curves of different saliency models 

on (a) MSRA and (b) SOD dataset. 
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Fig. 9. F-measure of different saliency models on MSRA and 

SOD dataset. 

 

 
Fig. 10. MAE of different saliency models on MSRA and 

SOD dataset. 

 

 
 

Fig. 11. Visual comparison of saliency maps generated from 

state-of-the-art methods, including our graph based 

approach and the ground truth (GT) 
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